Enfoque funcional en early algebra en las aulas brasileñas: ¿De dónde partimos?
Tipo de documento
Autores
Lista de autores
Magina, Sandra y Molina, Marta
Resumen
Las directrices curriculares de diversos países (e.g., Brasil) exigen la introducción de formas de pensar y conceptos algebraicos en Educación Primaria. Este enfoque conecta con contenidos propios del currículo de Educación Primaria, entre ellos los problemas aritméticos verbales y la proporcionalidad. En esa dirección, el objetivo del estudio es analizar las estrategias empleadas por alumnos brasileños en la resolución de problemas verbales con relaciones funcionales implícitas. La recogida de datos se realizó por medio de un cuestionario administrado colectivamente, con respuestas individuales, a alumnos de 4º, 5º y 6º cursos en sus aulas habituales y sin limitación de tiempo. Los resultados evidencian predominio del uso de relaciones de correspondencia vs escalares. Se detecta progresión en el rendimiento de los escolares y evolución favorable en el uso de las estrategias exitosas. Llaman la atención la necesidad de abordar la enseñanza para la puesta en práctica del enfoque funcional del Early algebra.
Fecha
2023
Tipo de fecha
Estado publicación
Términos clave
Documentos curriculares | Estrategias de solución | Otro (tipos funciones) | Resolución de problemas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Volumen
13
Número
4
Rango páginas (artículo)
1-17
ISSN
22380345
Referencias
Australian Curriculum, Assessment and Reporting Authority (2011). National Report on Schooling in Australia 2011. Sidney: Acara. Bednarz, N.; Kieran, C. & Lee, L. (1996). Aproaches to Algebra: Perspectives for research an teaching. Boston: Kluwer. Blanton, M. & Kaput, J. (2004). Elementary Grades students' capacity for functional thinking. En: Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (v. 2, pp. 135–142). Bergen. Noruega: PME. Blanton, M.; Levi, L.; Crites, T. & Dougherty, B. J. (Ed.). (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. Reston, VA: NCTM. Blanton, M.; Schifter, D.; Inge, V.; Lofgren, P.; Willis, C.; Davis, F. & Confrey, J. (2007). Early Algebra. En: V. J. Katz (Ed.). Algebra: Gateway to a Technological Future (pp. 7-14). Columbia: The Mathematical Association of America. Blanton, M. L.; Stephens, A.; Knuth, E.; Gardiner, A. M.; Isler, I. & Kim, J. S. (2015). The development of children’s algebraic thinking: the impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39-87. Brizuela, B. M. & MartÃnez, M. V. (2012). Aprendizaje de la comparación de funciones lineales. En: M. Carretero; J. A. Castorina & A. Barreiro (Ed.). Desarrollo Cognitivo y Educación: Procesos de Conocimiento y Contenidos EspecÃficos (v. 2, pp. 263-286). Buenos Aires: Editorial Paidós. Burgos, M. & Godino, J. (2019). Emergencia de razonamiento proto-algebraico en tareas de proporcionalidad en estudiantes de primaria. Educación Matemática, 31(3), 117-150. Butto, C. & Rojano, T. (2010). Pensamiento algebraico temprano: el papel del entorno Logo. Educación Matemática, 22(31), 55-86. Cañadas, M. C. & Molina, M. (2016). Una aproximación al marco conceptual y principales antecedentes del pensamiento funcional en las primeras edades. En: E. Castro; E. Castro. J. L. Lupiáñez; J. F. RuÃz & M. Torralbo (Ed.). Investigación en Educación Matemática: Homenaje a Luis Rico (pp. 209-218). Granada, España: Comares. Canavarro, A. P. (2009). O pensamento algébrico na aprendizagem da Matemática nos primeiros anos. Quadrante, 16(2), 81-118 Carraher, D. W.; MartÃnez, N. & Schliemann, A. D. (2008). Early Algebra and Mathematics Generalization. ZDM Mathematics Education, 40, 3-22. Carraher, D. W. & Schliemann, A. D. (2016). Powerful ideas in elementary school mathematics. En: L. English y D. Kirshner (Ed.). Handbook of International Research in Mathematics Education (pp. 191-218). New York: Routledge. Carraher, D. W.; Schliemann, A. D. & Schwartz, J. L. (2007). Early algebra is not the same as algebra early. En: J. Kaput, D. Carraher & M. Blanton (Ed.). Algebra in the early grades (pp. 235-272). Mahwah: LEA. Fernández, C. & Llinares, S. (2012). CaracterÃsticas del desarrollo del razonamiento proporcional en la educación primaria y secundaria. Enseñanza de las Ciencias, 30(1) 129-142. Ferreira, M. C. N.; Ribeiro, M. & Ribeiro, A. J. (2017) Conhecimento matemático para ensinar Ãlgebra nos Anos Iniciais do Ensino Fundamental. Zetetiké, 25(3), 496-514. Heid, M. K. (1996). A technology-intensive functional approach to the emergence of algebraic thinking. En: A. Bednarz, C. Kieran & L. Lee (Ed.). Approaches to algebra: perspectives for research and teaching (pp. 239-255). Dordrecht, PaÃses Bajos: Kluwer. Kaput, J. A (1995) research base for algebra reform: Does one exist. En D. Owens; M. Reed & G. M. Millsaps (Ed.), Proceedings of the 17th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (v.1, pp. 71–94). Columbus, Ohio: PME. Kaput, J. A. (2008). What is Algebra? What is algebraic reasoning? En: J. Kaput; D. Carraher & M. Blanton (Eds.). Algebra in early grades (pp. 5-17). Nueva York, NY: Routledge. Katz, V. J. (2007). Algebra: Gateway to a Technological Future. Columbia: The Mathematical Association of America. Lesh, R.; Post, T. & Behr, M. (1988). Proportional reasoning. En: J. Hiebert & M. Behr (Ed.). Number concepts and operations for the middle grades (pp. 93-118). Reston, VA: NCTM. Luna, A. & Souza, C. (2013) Discussão sobre o Ensino da álgebra nos anos iniciais do Ensino Fundamental. Educação Matemática Pesquisa, 15(4), 817-835. Magina, S. (2017). A introdução do raciocÃnio algébrico nos anos iniciais do ensino fundamental: contribuições da Psicologia para o Debate. VII Encontro Pernambucano de Educação Matemática (pp. 1-6). Garanhuns, PE. Magina, S; Oliveira, C. & Merlini, V. (2018). O raciocÃnio algébrico no Ensino Fundamental: o debate a partir da visão de quarto estudos. Em Teia, 9(1), 1-23. Magina, S. & Porto, R. (2018). EÌ possiÌvel se ter raciociÌnio funcional no niÌvel dos anos iniciais? Uma investigação com estudantes do 5º ano do ensino fundamental. VII Seminário Internacional de Pesquisa em Educação Matemática (pp. 1-12). Foz do Iguaçu, PR. Merino, E.; Cañadas, M. C. & Molina, M. (2013). Estrategias utilizadas por alumnos de primaria en una tarea de generalización que involucra relaciones inversas entre dos variables. Em: A. Berciano; G. Gutiérrez; A. Estepa & N. Climent (Ed.). Investigación en Educación Matemática XVII (pp. 383-392). Bilbao: SEIEM. Merlini, V.; Magina, S. & Texeira, C. (2018). O que sabe sobre equação, em representação icoÌ‚nica, os que formalmente ainda não sabem? Seminário Internacional de Pesquisa em Educação Matemática (pp. 1-12). Foz do Iguaçu, PR. Brasil. Ministério da Educação. Secretaria de Educação Básica. (2017). Base Nacional Comum Curricular: Educação Infantil e Ensino Fundamental. BrasÃlia, DF: MEC/SEB Chile. Ministerio de Educación. Unidad de CurrÃculo y Evaluación (2012). Bases Curriculares 1º a 6º Básico. Santiago, Chile. Molina, M. (2009). Una propuesta de cambio curricular: integración del pensamiento algebraico en educación primaria. PNA, 3(3), 135-156. Morales, R.; Cañadas, M. C.; Brizuela, B. & Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de educación primaria en un contexto funcional. Enseñanza de las Ciencias, 36(3), 59-78. National Council of Teacher of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, NCTM. Oliveira, C. & Magina, S. (2019). 1, 1, 2, 3, 5…: Padrões na Formação de Professores. XVIII Encontro Baiano de Educação Matemática (pp. 1-19). Ilhéus, BA. Oliveira, C. & Magina, S. (2023). O raciocÃnio algébrico e a formação hÃbrida de professores que ensinam Matemática: o poder dos sÃmbolos. Revista Interinstitucional Artes de Educar, 9(1), 263-283. Post, T. R.; Behr, M. J. & Lesh, R. A. (1995). Proporcionalidade e o desenvolvimento de noções pré-álgebra. En: A. F. Coxford & A. P. Shulte (Org.). As idéias da álgebra. Tradução de Hygino H. Domingues. (pp. 89-103). São Paulo, SP: Atual. Schliemann A. & Carraher, D. (1992). Proportional reasoning in and out of school. En: P. Light & G. Bitterworth (Ed.). Context and Cognition: ways of learning and knowing (pp. 47-73). London: Harvester Wheatsheaf. Schliemann A. D.; Carraher D. W. & Brizuela B. M. (2012). Algebra in elementary school. En: L. Coulange & J. P. Drouhard. (Ed.). Enseignement de l’algèbre élémentaire: Bilan et perspectives (pp. 109-124). Grenoble, France. Schliemann, A. D.; Carraher, D. W.; Brizuela, B. & Pendexter, W. (1998). Solving algebra problems before algebra instruction. Second Early Algebra Meeting. North Dartmouth, MA: University of Massachusetts at Dartmouth/Tufts University. Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. En: J. Kaput; D. Carraher & M. Blanton (Ed.), Algebra in the early grades (pp. 133-160). New York: LEA. Texeira, C.; Magina, S. & Merlini, V. (2021) Performance and Strategies Used by Elementary School Fifth Graders When Solving Problems Involving Functional Reasoning. In: A. Spinillo; S. Lautert & R. Borba (Ed.) Mathematical Reasoning of Children and Adults Teaching and Learning from an Interdisciplinary Perspective (pp. 191-219). Switzerland: Springer. Thompson, F. M. (1995). O ensino de álgebra para a criança mais nova. En: A. F. Coxford & A. P. Shulte (Org.). As idéias da álgebra (pp. 79-103). São Paulo, SP: Atual. Vergnaud, G. (1983). Multiplicative structures. En: R. Lesh & M. Landau (Ed.). Acquisition of Mathematics Concepts and Processes (pp. 127–174). New York: Academic Press. Vergnaud, G. (1991). El niño, las Matemáticas y la Realidad. México: Trillas. Zapatera, A. (2018). Introducción del pensamiento algebraico mediante la generalización de patrones. Una secuencia de tareas para Educación Infantil y primaria. Revista de Didáctica de las Matemáticas, 97, 51-67.
Proyectos
Cantidad de páginas
17