Ethnomodeling as a pedagogical tool for the ethnomathematics program
Tipo de documento
Autores
Lista de autores
Rosa, Milton y Orey, Daniel
Resumen
Mathematics used outside of the school may be considered as a process of ethnomodeling rather than a mere process of manipulation of numbers and procedures. The application of ethnomathematical techniques and the tools of modeling allow us to see a different reality and give us insight into mathematics done in a holistic way. In this perspective, the pedagogical approach that connects the cultural aspects of mathematics with its academic aspects is denominated ethnomodeling, which is a process of translation and elaboration of problems and questions taken from systems that are part of the students’ reality.
Fecha
2010
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación superior, formación de pregrado, formación de grado | Educación técnica, educación vocacional, formación profesional
Idioma
Revisado por pares
Formato del archivo
Revista
Revista Latinoamericana de Etnomatemática: Perspectivas Socioculturales de la Educación Matemática
Volumen
3
Número
2
Rango páginas (artículo)
14-23
ISSN
20115474
Referencias
Barbosa, J. C. (1997). O que pensam os professores sobre a modelagem matemática? [What do teachers think on mathematical modeling?]. Zetetiké, 7(11), 67-85. Barton, B. (1996). Making Sense of Ethnomathematics: Ethnomathematics is Making Sense. Educational Studies in Mathematics 31(1-2), 201-33. Bassanezi, R. C. (2002). Ensino-aprendizagem com modelagem matemática [Teaching and learning with mathematical modeling]. São Paulo, SP: Editora Contexto. Biembengut, M. S. (1999). Modelagem matemática e implicações no Ensino-aprendizagem de matemática [Mathematical modeling and its implications in teaching and learning mathematics]. Blumenau, SC: Editora da FURB. Biembengut, M. S. (2000). Modelagem & etnomatemática: Pontos (in)comuns [Modeling & ethnomathematics: (Un)common points]. In. Domite, M. C. (Ed.). Anais do Primeiro Congresso Brasileiro de Etnomatemática – CBEm-1. São Paulo, SP: FE-USP, 132 -141. Borba, M. C. (1990). Ethnomathematics and education. For the Learning of Mathematics, 10(1), 39-43. Cross, M., & Moscardini, A. O. (1985). Learning the art of mathematical modeling. West Sussex, England: Ellis Horwood Limited. D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics, 5(1), 44-48. D’Ambrosio, U. (1990). Etnomatemática [Ethnomathematics]. São Paulo, Brazil: Editora Ática. D’Ambrosio, U. (1992). Ethnomathematics: A research Programme on the History and Philosophy of Mathematics with Pedagogical implications. Notices of the American Mathematics Society, 39. 1183-85. D’Ambrosio, U (1993). Etnomatemática: Um Programa [Ethomathematics: A program]. A Educação Matemática em Revista, 1(1), 5-11 D’Ambrosio, U. (2000). Etnomatemática e modelagem [Ethnomathematics and modeling]. In. Domite, M. C. (Ed.). Anais do Primeiro Congresso Brasileiro de Etnomatemática – CBEm-1. São Paulo: FE-USP, 142. Ferreira, E. S. (2004). Os índios Waimiri-Atroari e a etnomatemática [The indigenous people Waimiri-Atroari and ethnomathematics]. In Knijnik, G.; Wanderer, F., Oliveira. C. J. (Eds.). Etnomatemática: Currículo e Formação de Professores [Ethnomathematics: Curriculum and Teacher’s Education]. Santa Cruz do Sul, RS: EDUNISC. Freire, P. (1970). Pedagogia do Oprimido [Pedagogy of the oppressed]. Rio de Janeiro, Brazil: Paz e Terra. Freire, P. (1998). Pedagogy of freedom: Ethics, democracy, and civic courage. New York: Rowman and Litttlefield. Hodgson, T., & Harpster, D. (1997). Looking back in mathematical modeling: Classroom observations and instructional strategies. School Science & Mathematics, 97(5), 260-267. Monteiro, A. (2004). Etnomatemática: papel, valor e significado [Ethnomathematics: role, value, and meaning]. In Ribeiro, J. P., Domite, M. C. S., & Ferreira, R. (Eds.). Etnomatemática: papel, valor e significado. São Paulo: Zouk. Orey, D. C. (2000). The ethnomathematics of the Sioux tipi and cone. In Selin, H. (Ed.). Mathematics Across Culture: the History of Non-Western Mathematics. Dordrecht, Netherlands: Kulwer Academic Publishers, 239–252. Orey, D. C. & Rosa, M. (2003). Vinho e queijo: Etnomatemática e modelagem! [Wine and cheese: Ethnomathematics and modeling!] BOLEMA, 16(20), 1-16. Rios, D. P. (2000). Primero etnogeometría para seguir con etnomatemática. In. Domite, M. C. (Ed.). Anais do Primeiro Congresso Brasileiro de Etnomatemática – CBEm-1. São Paulo, SP: FE-USP, 367 - 375. Rosa, M. (2000). From reality to mathematical modeling: A Proposal for using ethnomathematical knowledge. Unpublished master thesis. California State University, Sacramento. Rosa, M., & Orey, D. C. (2006). Abordagens atuais do programa etnomatemática: delinenando-se um caminho para a ação pedagógica [Current approaches in the ethnomathematics as a program: Delineating a path toward pedagogical action]. Bolema, 19(26), 19-48. Rosa, M., & Orey, D. C. (2007a). Cultural assertions and challenges towards pedagogical action of an ethnomathematics program. For the Learning of Mathematics, 27(1), 10-16. Rosa, M., & Orey D. C. (2007b). Etnomatemática: um enfoque histórico-antropológico [Ethnomathematics: A historical-anthropological approach]. Revista de Educação Matemática, 10(11, 12), 29-34. Zaslavsky, C. (1996). The multicultural math classroom: Bringing in the world. Portsmouth, ME: Heinemann.