Ethnomodelling: exploring glocalization in the contexts of local (emic) and global (etic) knowledges
Tipo de documento
Autores
Lista de autores
Rosa, Milton y Clark, Daniel
Resumen
The acquisition of both local (emic) and global (etic) knowledge forms is an alternative goal for the implementation of ethnomodelling research. Local knowledge is essential for an intuitive and empathic understanding of mathematical ideas, procedures, and practices developed by the members of distinct cultural groups, which is important for conducting effective ethnographic fieldwork. Furthermore, local knowledge is a valuable source of inspiration for the development of global hypotheses, while global knowledge is essential for the achievement of cross-cultural comparisons. Such comparisons demand standard analytical units and categories to facilitate communication. Glocal (dialogical) knowledge is the third approach for conducting ethnomodelling research that makes use of both local and global knowledge through processes of dialogue and interaction. In this paper, we define ethnomodelling as the study of mathematical phenomena within a culture because it is a social construct and is culturally bound. Thus, ethnomodelling brings the cultural aspects of mathematics into mathematical modelling process. Finally, the main purpose of this paper is to share the use of a combination of local, global, and glocal approaches in the research area of ethnomodelling, which contributes to the acquisition of a more complete understanding (glocal) of mathematical practices developed by the members of distinct cultural groups.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Culturales | Desde disciplinas académicas | Etnomatemática | Modelización | Sociopolíticos
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
6
Número
1
Rango páginas (artículo)
196-218
ISSN
22380345
Referencias
Anderson, D. (2007). Multicultural group work: a force for developing and healing. The Journal for Specialists in Group Work, 32(3), 224–244. Barber, B. (2004). Jihad vs. me world. In Frank J. Lechner & John Boli (Eds.), The Globalization Reader (pp.29-35). Malden, MA: Blackwell. Bassanezi, R. C. (2002). Ensino-aprendizagem com modelagem matemática [Teaching and learning with mathematical modelling]. São Paulo, SP: Editora Contexto. Bourbaki, N. Elements of the history of mathematics. New York, NY: Springer-Verlag, 1998. Cheng, Y. C. (2005). New paradigm for re-engineering education. New York, NY: Springer. D’Ambrosio, U. (1990). Etnomatemática [Ethnomathematics]. São Paulo, SP: Editora Ática. D’Ambrosio, U (1993). Etnomatemática: um programa [Ethomathematics: a program]. A Educação Matemática em Revista, 1(1), 5-11. D’Ambrosio, U. (1998). Introduction: Ethnomathematics and its first international congress. ZDM, 31(2), 50-53. D’Ambrosio, U. (2000). Etnomatemática: uma proposta para a civilização em mudança [Ethnomathematics: a proposal for a changing civilization]. In. Domite, M. C. (Ed.). Anais do Primeiro Congresso Brasileiro de Etnomatemática – CBEm-1 (143-152). São Paulo, SP: FE-USP. D’Ambrosio, U. (2006a). The program ethnomathematics: A theoretical basis of the dynamics of intra-cultural encounters. The Journal of Mathematics and Culture, 1(1), 17. D’Ambrosio. U. (2006b). The program ethnomathematics and the challenges of globalization. Circumscribere: International Journal for the History of Science, 1, 7482. Eglash, R., Bennett, A., O’Donnell, C., Jennings, S., & Cintorino, M. (2006). Culturally situated designed tools: ethnocomputing from field site to classroom. American Anthropologist, 108(2), 347-362. Fernandez, S. A. (2009). A theory of cultural glocality. Master Thesis. College of Arts and Science. Department of Philosophy. Jacksonville, FL: University of North Florida. Freire, P. (1998). Pedagogy of freedom: ethics, democracy, and civic courage. New York, NY: Rowman and Litttlefield. Friedman, T. (2000). The Lexus and the olive tree: understanding globalization. New York, NY: Random House. Hoyrup, J. (2002). Lengths, widths, surfaces: a portrait of old Babylonian algebra and its kin. New York, NY: Springer-Verlag. Helfrich, H. (1999). Beyond the dilemma of cross-cultural psychology: Resolving the tension between etic and emic approaches. Culture and Psychology, 5, 131–153. Iser, W. On translatability (1994). Surfaces, 4307, 5-13. Joseph, G. G. (1991). The crest of the peacock: non-European roots of mathematics. Princeton, NJ: Princeton University Press. Khondker, H. H. (2004). Glocalization as globalization: evolution of a sociological concept. Bangladesh e-Journal of Sociology, 1(2), 1-9. Kloos, P. (2000). The dialectics of globalization and localization. In D. Kalb, M. van der Land, R. Staring, B. van Steenbergen & N. Wilterdink (Eds.), The ends of globalization: bringing society back in (pp. 281-298). Lanham, MD: Rowman & Littlefield. Latour, B. (1993). We have never been modern. Cambridge, MA: Harvard University Press. Neugebauer, O., & A. Sachs. (1945). Mathematical cuneiform texts. New Haven, CT: American Oriental Society. Orey, D. C. (2000). The ethnomathematics of the Sioux tipi and cone. In Selin, H. (Ed.). Mathematics across culture: the history of non-western mathematics (pp. 239-252). Dordrecht, The Netherlands: Kulwer Academic Publishers. Orey, D. C., & Rosa, M. (2007). POP: A study of the ethnomathematics of globalization using the sacred Mayan mat pattern. In Atweb, B.; Barton, A. C.; Borba, M. C.; Gough, N.; Keitel, C.; Vistro-Yu, C.; Vithal, R. (Eds.). Internacionalisation and Globalisation in Mathematics and Science Education (pp. 227-235). Dordrecht, Netherlands: Springer. Powell, A. B. & Frankenstein, M. (1997). Introduction. In Powell, A. B., & Frankenstein, M. (Eds.). Ethnomathematics: challenging eurocentrism in mathematics education (pp. 1-4). New York, NY: State University of New York Press. Robertson, R. 1992. Globalization: social theory and global culture. London, England: Sage. Robertson, R. (1995) Glocalization: time-space and homogeneity- heterogeneity, M. Featherstone et al (Eds.), Global modernities (pp. 25-44), London, England: Sage. Robertson. R. (1997). Comments on the global triad and glocalization. Paper presented at the Globalization and Indigenous Culture Conference, Institute for Japanese Culture and Classics. Tokyio, Japan: Kokugakuin University. Rosa, M. (2000). From reality to mathematical modelling: A Proposal for using ethnomathematical knowledge. Master thesis, California State University, Sacramento. Publication No. R7880 2000. Rosa, M., & Orey, D. C. (2003). Vinho e queijo: Etnomatemática e modelagem! [Wine and cheese: Ethnomathematics and modelling!] BOLEMA, 16(20), 1-16. Rosa, M., & Orey, D. C. (2006). Abordagens atuais do programa etnomatemática: delinenando-se um caminho para a ação pedagógica [Current approaches in the ethnomathematics as a program: delineating a path toward pedagogical action]. BOLEMA, 19(26), 19-48. Rosa, M., & Orey, D. C. (2007). Cultural Assertions and Challenges towards Pedagogical Action of an Ethnomathematics Program. For the Learning of Mathematics, 27(1), 10-16. Rosa, M., & Orey, D. C. (2008a). Ethnomathematics and cultural representations: Teaching in highly diverse contexts. Acta Scientiae, 10(1), 27-46. Rosa, M.; & Orey, D. C. (2008b). A geometric solution for an ancient Babylonian problem. CMC ComMuniCator, 33(2), 34-35. Rosa, M.; & Orey, D. C. (2010). Ethnomodelling: a pedagogical action for uncovering ethnomathematical practices. Journal of Mathematical Modelling and Application, 1(3), 58-67. Rosa, M., & Orey, D. C. (2013). Ethnomodelling as a methodology for ethnomathematics. In G. A. Stillman & J. Brown. (Orgs.), Teaching mathematical modelling: connecting to research and practice. International perspectives on the teaching and learning of mathematical modelling (pp. 77-88). Dordrecht, The Netherlands: Springer. Rosa, M., & Orey, D. C. (2015). A trivium curriculum for mathematics based on literacy, matheracy, and technoracy: an ethnomathematics perspective. ZDM, 47(4), 587-598. Rowe, W.; & V. Schelling (1991). Memory and modernity: popular culture in Latin America. London, England: Verso. Sue, D. W.; & Sue, D. (2003). Counseling the culturally diverse: Theory and practice. New York, NY: John Wiley & Sons. Urton, G. The social life of numbers: a Quechua ontology of numbers and Philosophy of arithmetic. Austin, TX: University of Texas Press, 1997. Yang, E. (2003). The circulation of East Asian trendy dramas grounded on cultural proximity. Bansong Yeongu, 69, 197-220. Yifeng, S. (2009). Cultural translation in the context of glocalization. Ariel, 40(2-3), 89–110.