Inductive reasoning in the justification of the result of adding two even numbers
Autores
Lista de autores
Cañadas, María C. y Castro, Encarnación
Resumen
In this paper we present an analysis of the inductive reasoning of twelve secondary students in a mathematical problem-solving context. Students were proposed to justify what is the result of adding two even numbers. Starting from the theoretical framework, which is based on Pólya’s stages of inductive reasoning, and our empirical work, we created a category system that allowed us to make a qualitative data analysis. We show in this paper some of the results obtained in a previous study.
Fecha
2005
Tipo de fecha
Estado publicación
Términos clave
Divisibilidad | Generalización | Inductivo | Patrones numéricos | Procesos de justificación
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Lugar (evento)
Tipo de evento
Tipo de presentación
Referencias
Allen, L. G. (2001). Teaching Mathematical Induction. An Alternative Approach. Mathematics Teacher, 94, 500-504. Bolletín Oficial del Estado. (2003). Real Decreto, 832/2003. Cañadas, C., Castro, E. & Gómez, P. (2002). Didactical reflections about some proofs of the Pythagorean proposition. En A. Cockburn & E. Nardi (Eds.). Proceedings of the 26th International Group for the Psychology of Mathematics Education, England, 177-184. Cañadas, M. C. (2002). Razonamiento inductivo puesto de manifiesto por alumnos de secundaria. Granada: Universidad de Granada. Cañadas, M. C., Nieto, E. & Pizarro, A. (2001). El valor de la demostración en la educación secundaria. En J. Berenguer, B. Cobo y J. M. Navas (Eds.). Proceedings of Investigación en el aula de matemáticas: retos de la educación matemática del siglo XXI, España, 167-172. Cohen, L. & Manion, L. (1990). Métodos de investigación educativa. Madrid: Editorial La Muralla. Edwards, L. D. (1999). Odds and Evens: Mathematical Reasoning and Informal Proof among High School Students. Journal of Mathematical Behavior, 17, 4, 489-504. Goetting, M. (1995). The college student´s understanding of mathematical proof. Doctoral Disseration. Philosophy Department of University of Maryland. Healy, L. & Hoyles, C. (1998). Justifying and Proving in School Mathematics. (Technical Report on The Nationwide Survey. Institute of Education, University of London, February, 1998. Jones, L. (1996). A Developmental approach to proof. Proceedings of the 8th International Congress on Mathematical Education, 109-154. Keith. D. (1994). Mathematics. The Science of Patterns. Scientific American Library: New York. Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27, 29-36. Miyakawa, T. (2002). Relation between proof and conception: the case of proof for the sum of two even numbers. Proceedings of the 26th International Group for the Psychology of Mathematics Education, 3, 353-360. Neubert, G. A. & Binko, J. B. (1992). Inductive reasoning in the secondary classroom. Washington D.C.: National Education Association. Pólya, G. (1966). Matemáticas y razonamiento plausible. Madrid: Tecnos. Pólya, G. (1967). Le découverte des mathématiques. París: DUNOD. Segovia, I. y Rico, L. (2001). Unidades didácticas. Organizadores. En E. Castro (Ed.), Didáctica de la Matemática en la Educación Primaria (pp. 83-104). Madrid: Síntesis. Stacey, K. & Groves, S. (1999). Resolver problemas: estrategias. Madrid: Narcea. Steen, L. (1988). The Science of Patterns, Science, 611-616.