La capacidad espacial en la educación matemática: estructura y medida
Tipo de documento
Autores
Lista de autores
Arrieta, Modesto
Resumen
Desde la década de 1950 los educadores matemáticos se han interesado por la capacidad espacial, sobre todo, por su relación con el rendimiento en matemáticas en general y en geometría en particular. Términos como “pensamiento espacial”, “visualización”, “orientación espacial” han sido tratados sin un modelo en el cual apoyarse, lo que ha ocasionado una gran dispersión de nombres, conceptos y pruebas en las investigaciones realizadas, lo cual dificulta enormemente la obtención de conclusiones válidas. Como modelo de inteligencia se propone el modelo de los tres estratos de Carroll, en cuya estructura factorial figura la capacidad espacial como factor amplio de segundo orden configurado por cinco factores específicos independientes de primer orden que se tratan de caracterizar: visualización, relaciones espaciales, velocidad de clausura, flexibilidad de clausura y velocidad perceptiva. Se proponen diferentes pruebas que nos permiten medir la capacidad espacial de los alumnos, las cuales deben llevarse a cabo cada dos años, a lo largo de toda la escolaridad obligatoria. Se muestran los resultados obtenidos por cada grupo de edad y se analizan también las diferencias entre chicos y chicas. Se concluye con una breve exposición sobre la importancia y utilidad del modelo propuesto tanto para el futuro de la investigación en este campo, que permitirá saber si una propuesta didáctica de geometría mejora o no la capacidad espacial de los alumnos a los que va dirigida, como para las implicaciones en el trabajo de orientación que se desarrolla en la escuela obligatoria.
Fecha
2006
Tipo de fecha
Estado publicación
Términos clave
Capacidades | Geometría | Medida | Métodos estadísticos | Visualización
Enfoque
Nivel educativo
Educación primaria, escuela elemental (6 a 12 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Referencias
Arrieta, M. (2003), “Capacidad espacial y educación matemática: tres problemas para el futuro de la investigación”, Educación Matemática, vol. 15, núm. 3, pp. 57-76. Azorín Poch, F. y J.L. Sánchez Crespo (1986), Métodos y aplicaciones del muestreo, Madrid, Alianza. Barakat, M.K. (1951), “A Factorial Study of Mathematical Abilities”, British Journal of Psychology: Statistics Section, vol. 4, pp. 137-156. Bartolini Bussi, M. (1996), “Mathematical Discussion and Perspective Drawing in Primary School”, Educational Studies in Mathematics, vol. 31, pp. 1-2, 11-41. Battista, M.T. (1990), “Spatial Visualization and Gender Differences in High School Geometry”, Journal for Research in Mathematics Education, vol. 21, núm. 1, pp. 47-60. Battista, M.T., G.H. Wheatley y G. Talsma (1982), “The Importance of Spatial Visualization and Cognitive Development for Geometry Learning in Preservice Elementary Teachers”, Journal for Research in Mathematics Education, vol. 13, núm. 5, pp. 332-340. Bennett, G.K., H.G. Seashore y A.G. Wesman (1973), DAT. Tests de aptitudes diferenciales (Versión 5-2000), Tests y manual, Madrid, TEA. Bickley, P.G., T.Z. Keith y L.M. Wolfle (1995), “The Three-Stratum Theory of Cognitive Abilities: Test of the Structure of Intelligence Across the Life Span”, Intelligence, vol. 20, pp. 309-328. Binet, A. y T. Simon (1905), “Méthodes nouvelles pur le diagnostique du niveau intellectuel des anormaux”, L’Anné Psychologique, vol. 11, pp. 191-244. Bishop, A.J. (1977), “Visualising and Mathematics in a Pretechnological Culture”, Educational Studies in Mathematics, vol. 10, pp. 135-146. Bishop, A.J. (1980), “Spatial Abilities and Mathematics Education”, Educational Studies in Mathematics, vol. 11, pp. 257-269. –––––– (1983), “Space and Geometry”, en R. Lesh y M. Landau (eds.), Acquisition of Mathematics Concepts and Processes, Nueva York, pp. 175-203. –––––– (1989), “Review of Research on Visualization in Mathematics Education”, Focus on Learning Problems in Mathematics, vol. 11, núm. 1, pp. 7-16. Burin, D.I., A.R. Delgado y G. Prieto (2000), “Solution Strategies and Gender Differences in Spatial Visualization Tasks”, Psicológica, vol. 21, pp. 275-286. Burt, C. (1949), “The Structure of Mind: A Review of the Results of Factor Analysis”, British Journal of Educational Psychology, vol. 19, pp. 100-111, 176-199. Carroll, J.B. (1980), Individual Differences Relations in Psychometric and Experimental Cognitive Tasks, Chapel Hill, LL, Thurstone Laboratory, University of North Carolina. –––––– (1988), “Cognitive Abilities, Factors and Processes”, Intelligence, vol. 12, núm. 2, pp. 101-109. –––––– (1993), Human Cognitive Abilities: A Survey of Factor Analytic Studies, Cambridge, Cambridge University Press. –––––– (1994), “Constructing a Theory from Data”, en D.K. Detterman (ed.), Current Topics in Human Intelligence, vol. 4, Theories of Intelligence, Norwood, NJ, Ablex. Cattell, J.M. (1890), “Mental Tests and Measurements”, Mind, vol. 15, pp. 373-380. Cattell, R.B. (1971), Intelligence: Its Structure, Growth and Action, Boston, Houghton-Miflin. Clements, D.H. (2003), Teaching and Learning Geometry. A Research Companion to Principles and Standards for School Mathematics, Reston VA, NCTM. Clements, D.H. y M.E. Battista (1992), “Geometry and Spatial Reasoning”, en D.A. Grouws (ed.), Handbook of Research on Mathematics Teaching and learning, Nueva York, Macmillan, pp. 420-464. Clements, M.A. (Ken) (1979), “Sex Differences in Mathematical Performance: An Historical Perspective”, Educational Studies in Mathematics, vol. 10, pp. 305-322. –––––– (1983), “The Question of How Spatial Ability is Defined, and its Relevance to Mathematics Education”, Zentralblatt for Didaktik der Mathematik, vol. 1, pp. 8-20. –––––– (1998), Visualisation and Mathematics Education, Barcelona, TIEM. Cobb, P. (1995), “Cultural Tools and Mathematical Learning: A Case Study”, Journal for Research in Mathematics Education, vol. 26, núm. 4, pp. 362-385. Connor, J.M. y L.A. Serbin (1980), Mathematics, Visual-Spatial Ability and Sex Roles, Washington, ERIC Reports. –––––– (1985), “Visual-Spatial Skill: Is it Important for Mathematics? Can it be Taught?”, en S.F. Chipman, L.R. Brush y D.M. Wilson (eds.), Women and Mathematics, Hilsdale, NJ, Lawrence Erlbaum Associates, pp. 151-174. Cooper, L.A. y R.N. Shepard (1973), “Chronometric Studies of the Rotation of Mental Images”, en W.G. Chase (ed.), Visual Information Processing, Academic Press. Cossío, J. (1997), Diagnosis de la habilidad de visualizar en el espacio 3D con estudiantes de Bachillerato (BUP) del Bilbao metropolitano, tesis de doctorado, Leioa, Universidad del País Vasco. Cox, J.W. (1928), Mechanical Aptitude, Londres, Methue. De Juan-Espinosa, M. (1997), Geografía de la inteligencia humana, Madrid, Pirámide. Detterman, D.K. (1992), “Assessment of Basic Cognitive Abilities in Relation to Cognitive Deficits”, American Journal of Mental Retardating, vol. 97, núm. 3, pp. 251-286. Diaz Godino, J., M.C. Batanero y M.J. Cañizares (1989), Estudio estadístico de la población escolar de la provincia de Jaen: aplicación al diseño de encuestas escolares, Granada, Servicio de Publicaciones de la Universidad de Granada. Eisenhart, M. (1988), “The Ethnographic Research Tradition and Mathematics Education Research”, Journal for Research in Mathematics Education, vol. 19, núm. 2, pp. 99-114. Ekstrom, R.B., J.W. French, H.H. Harman y D. Dermen (1976), Kit of Factor-Referenced Cognitive Tests, Princeton, NJ, Educational Testing Service. Eliot, J. (1987), Models of Psychological Space, Nueva York, Springer Verlag. Ethington, C.A. (1990), “Gender Differences in Mathematics: An International Perspective”, Journal for Research in Mathematics Education, vol. 21, pp. 74-80. Eysenck, H.J. (1985), “Revolution in the Theory and Measurement of Intelligence”, Evaluación Psicológica, vol. 1, pp. 99-158. Feingold, A. (1988), “Cognitive Gender Differences Are Disappearing”, American Psychologist, vol. 43, núm. 2, pp. 95-103. Fennema, E. (1979), “Women and Girls in Mathematics-Equity in Mathematics Education”, Educational Studies in Mathematics, vol. 10, pp. 389-401. Fennema, E. y L. Hart (1994), “Gender and the JRME”, Journal for Research in Mathematics Education, vol. 25, pp. 648-659. Fennema, E. y J. Sherman (1977), “Sex-related Differences in Mathematics Achievement, Spatial Visualization and Affective Factors”, American Educational Research Journal, vol. 14, núm. 1, pp. 51-71. –––––– (1978), “Sex-related Differences in Mathematics Achievement and Related Factors: A Further Study”, Journal for Research in Mathematics Education, vol. 9, pp. 189-203. Fennema, E. y L.A. Tartre (1985), “The Use of Spatial Visualization in Mathematics by Girls and Boys”, Journal for Research in Mathematics Education, vol. 16, núm. 3, pp. 184-206. Ferrini-Mundy, J. (1987), “Spatial Training for Calculus Student: Sex Differences in Achievement and in Visualization Ability”, Journal for Research in Mathematics Education, vol. 18, núm. 2, pp. 126-140. Galton, F. (1869/1978), Hereditary Genius, Londres, Jualian Fiedmann. García Ganuza, J.M. (2000), Intervención para mejorar aptitudes espaciales en alumnos de ambos sexos, tesis de doctorado, Universidad del País Vasco. Gerdes, P. (1988), “On Culture, Geometrical Thinking and Mathematics Education”, Educational Studies in Mathematics, vol. 19, núm. 2, pp. 137-162. Guay, R.B. y E.D. McDaniel (1977), “The Relationship between Mathematics Achievement and Spatial Abilities among Elementary School Children”, Journal for Research in Mathematics Education, vol. 8, pp. 211-215. Guilford, J.P. (1967), The Nature of Human Intelligence, Nueva York, McGraw-Hill. Gustafsson, J.E. (1985), “Measuring and Interpreting ‘g’”, Behavioral and Brain Sciences, vol. 8, pp. 231-232. –––––– (1988), “Hierarchical Models of Individual Differences”, en R.J. Sternberg (ed.), Advances in the Psychology of Human Intelligence, Hillsdale, New Jersey, Erlbaum, vol. 4. Gutierrez, A. (1998), Tendencias actuales de investigación en Geometría y visualización, Barcelona, TIEM. Guttman, L. (1954), “A New Approach to Factor Analysis: The Radix”, en P.F. Lazarsfeld (ed.), Mathematical Thinking in the Social Sciences, Glencove, IL, Free Press. Herschkowitz, R. (1989), “Visualization in Geometry-Two Sides of the Coin”, Focus on Learning Problems in Mathematics, vol. 11, núm. 1, pp. 61-76. Herschkowitz, R., B. Parzysz y J. van Dormolen (1996), “Space and Shape”, en A. Bishop et al. (eds.), International Handbook of Mathematics Education. Horn, J.L. (1968), “Organisation of Abilities and the Development of Intelligence”, Psychological Review, vol. 75, pp. 242-259. –––––– (1985), “Remodelling Old Models of Intelligence”, en B.B. Wolman (ed.), Handbook of Intelligence: Theories, Measurement and Applications, Nueva York, John Wiley and Sons. –––––– (1988), “Thinking about Human Abilities”, en J.R. Nesselroade y R.B. Cattell (eds.), Handbook of Multivariate Experimental Psychology, 2a. ed., Nueva York, Plenum Press. Hunt, E. (1985), “The Correlates of Intelligence”, Current Topics in Human Intelligence, vol. 1, pp. 157-178. –––––– (1989), “Diferencias individuales y cognición: una nueva aproximación a la inteligencia”, Estudios de Psicología, pp. 39-40, 103-131. Jensen, A.R. (1982), “Reaction Time and Psychometric g”, en H.J. Eysenck (ed.), A Model for Intelligence. Berlín, Springer-Verlag Kelley, T.L. (1928), Crossroads in the Mind of Man: A Study of Differentiable Mental Abilities, Stanford, Stanford University Press. Kohs (1928), Cubos de KOHS, Madrid, MEPSA. Kosslyn, S.M. (1980), Image and Mind, Cambridge, Massachusets, Harvard University Press. Lahrizi, H. (1984), Étude de l’habilité a visualiser des relations géométriques dans trois dimensions chez les élèves et les élèves-professeur au Maroc, tesis de maestría, Université de Laval, Quebec. Lean, G. y M.A. Clements (1981), “Spatial Ability, Visual Imagery, and Mathematical Performance”, Educational Studies in Mathematics, vol. 12, pp. 267-299. Leder, G. (1985), “Sex-Related Differences in Mathematics: An Overview”, Educational Studies in Mathematics, vol. 16, núm. 3, pp. 304-319. Linn, M.C. y A.C. Petersen (1985), “Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis”, Child Development, vol. 56, pp. 1479-1498. Lohman, D.F. (1979), Spatial Ability: A Review and Reanalysis of the Correlation Literature, Stanford, Stanford University Technical Report, núm. 9. Lohman, D.F. et al. (1987), “Dimensions and Components of Individual Differences in Spatial Abilities”, en S.H. Irvine y S.E. Newstead (eds.), Intelligence and Cognition: Contemporary Frames of Reference, Dordrecht, Martinus Nijhoff. Maccoby, E.E. y C.N. Jacklin (1974), The Psychology of Sex Differences, Stanford, Stanford University Press. Mcfarlane, M. (1925), “A Study of Practical Ability”, British Journal of Psychology, Monograph Suplement, núm. 8. Mcfarlane Smith, I. (1964), Spatial Ability: Its Educational and Social Significance, Londres, University of London Press. Marshlek, B., D.F. Lohman y R.E. Snow (1983), “The Complexity Continuum in the Radex and Hierarchical Models of Intelligence”, Intelligence, vol. 7, pp. 107-128. McGee, M. G. (1979), “Human Spatial Abilities: Psychometric Studies and Environmental, Genetic, Hormonal, and Neurological Influences”, Psychological Bulletin, vol. 86, núm. 5, pp. 889-918. Metzer, J. y R.W. Shepard (1974), “Transformational Studies of the Internal Representation of Three-Dimensional Objects”, en R.L. Solso (ed.), Theorie in Cognitive Psychology: The Loyola Symposium, Potomac, Lawrence. Miller, E.M. (1994), “Intelligence and Brain Myelinization: A hypothesis”, Personality and Individual Differences, vol. 17, pp. 803-832. Mitchelmore, M.C. (1976), “Cross-Cultural Research on Concepts of Space and Geometry”, en J.L. Martin y D.A. Bradbard (eds.), Space and Geometry, Washington, ERIC Reports. –––––– (1980), “Three-Dimensional Geometrical Drawing in Three Cultures”, Educational Studies in Mathematics, vol. 11, pp. 205-216. Murray, J.E. (1949), “Analysis of Geometric Ability”, Journal of Educational Psychology, vol. 40, pp. 118-124. NCTM (1989, 2000), Curriculum and Evaluation Standards for School Mathematics, Reston, VA, NCTM. Oltman, P.K., E. Ratskin y H.A. Witkin (1981), GEFT. Test de figuras enmascaradas (forma colectiva), Madrid, TEA. Presmeg, N. (1989), “Visualization in Multicultural Mathematics Classrooms”, Focus on Learning Problems in Mathematics, vol. 11, núm. 1, p. 17. Rilea, S.L. (2002), Sex Differences in Spatial Ability: A Lateralization of Function Approach, UMI. Shar, A. y W. Geeslin (1980), “Children’s Spatial-Perceptual Preferences: A Cross Cultural Comparison”, Journal for Research in Mathematics Education, vol. 11, núm. 2, pp. 156-160. Shepard, R.N. (1975), “Form, Formation, and Transformation of Internal Representations”, en R.L. Solso (ed.), Information Processing and Cognition: The Loyola Symposium, Hillsdale, Erlbaum. Spearman, C. (1904), “General Intelligence, Objectively Determined and Measured”, American Journal of Psychology, vol. 15, pp. 72-101. Spearman, C. (1927), The Abilities of Man, Londres, Macmillan. Sperry, R.W. (1951), “Mechanisms of Neural Maturation”, en S.S. Stevens (ed.), Handbook of Experimental Psychology, Nueva York, Willey. –––––– (1963), “Chemoaffinity in the Orderly Growth of Nerve Fiber Patterns of Connections”, Proceedings of the National Academy of Science, vol. 50, pp. 703-710. Stenquist, J.L. (1922), Mechanical Aptitude Tests, Nueva York, World Book. Sternberg, R.J. (1985), Beyond IQ: A Triarchic Theory of Human Intelligence, Cambridge, Cambridge University Press. –––––– (1988), Las capacidades humanas, Madrid, Labor. Suydam, M.N. (1985), “The Shape of Instruction in Geometry: Some Highlights from Research”, Mathematics Teacher, vol. 78, pp. 481-486. Tartre, L.A. (1990), “Spatial Orientation Skill and Mathematical Problem Solving”, Journal for Research in Mathematics Education, vol. 21, núm. 3, pp. 216-229. Tartre, L.A. y E. Fennema (1995), “Mathematics Achievement and Gender: A Longitudinal Study of Selected Cognitive and Affective Variables (grades 6-12)”, Educational Studies in Mathematics, vol. 28, pp. 199-217. Terman, L.M. (1916), The Measurement of Intelligence, Boston, Houghton-Miflin. Terman, L.M. y M.A. Merrill (1937), Measuring Intelligence, Boston, Houghton-Miflin. Thurstone, L.L. (1938), Primary Mental Abilities, Chicago, University of Chicago Press. Triadafillidis, T.A. (1995), “Circumventing Visual Limitations in Teaching the Geometry of Shapes”, Educational Studies in Mathematics, vol. 29, núm. 3, pp. 225-235. Usiskin, Z. (1987), “Resolving the Continuing Dilemmas in School Geometry”, en M.M. Lindquist y A.P. Shulte (eds.), Learning and Teaching Geometry, K-12: 1987 Yearbook, Reston,VA, National Council of Teachers of Mathematics, pp. 17-31. Vernon, P.E. (1950/1971), The Structure of Human Abilities, Nueva York, Wiley. –––––– (1955), “The Assessment of Children”, Studies in Education, vol. 7, pp. 189-215. –––––– (1987), Speed of Information Processing, Reaction Time and the Theory of Intelligence, Norwood, NJ, Ablex. Voyer, D., S. Voyer y M.P. Bryden (1995), “Magnitude of Sex Differences In Spatial Abilities: A Meta-Analysis and Consideration of Critical Variables”, Psychological Bulletin, vol. 117, núm. 2, pp. 250-270. Wattanawaha, W. (1977), Spatial Ability and Sex Differences in Performance on Spatial Tasks, tesis de maestría, Monash University, Melbourne. Wheatley, G.H., R.L. Frankland, R. Mitchell y R. Kraft (1978), “Hemispheric Specialization and Cognitive Development: Implications for Mathematics Education”, Journal for Research in Mathematics Education, vol. 9, pp. 19-32. Wrigley, J. (1958), “The Factorial Nature of Ability in Elementary Mathematics”, British Journal of Educational Psychology, vol. 1, pp. 61-78.