La corriente realista de didáctica de la matemática. Experiencias de un grupo de docentes y capacitadores
Tipo de documento
Autores
Lista de autores
Zolkower, Betina, Bressan, Ana y Gallego, Fernanda
Resumen
Este artículo trata acerca del trabajo de un grupo de docentes convocados por su interés en la educación matemática realista (EMR), corriente que surge en Holanda en los años 60 en torno a las ideas de Hans Freudenthal. A través de una serie de experiencias de aula realizadas por integrantes de este grupo de docentes se presentan los principios centrales de esta corriente didáctica. Se concluye con una reflexión acerca de los aspectos de la EMR que los integrantes del grupo consideran más valiosos para la transformación de su práctica docente.
Fecha
2006
Tipo de fecha
Estado publicación
Términos clave
Contextos o situaciones | Continua | Numérica | Operaciones aritméticas
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
6
Rango páginas (artículo)
11-30
ISSN
23625562
Referencias
Abreu, G. (2000). “El papel del contexto en la resolución de problemas matemáticos”. En: Gorgorió N, Deulofeu J., Bishop A (coods), Matemática y educación. Retos y cambios desde una perspectiva internacional. ICE, Universidad de Barcelona, Grao, España, 137-150. Anghileri, J. (Ed.) (2001). Principles and practices in arithmetic teaching - innovative approaches for the Primary Classroom. Buckingham: Open University Press. Bakker, A. (2004). Design research in statistics education. On symbolizing and compute tools. Dis-ertation. CD-B Press. Center for Science and Mathematics Education, Freudenthal Institute, Utrecht University. Bonotto, C. (2001). How to connect school mathematics with students’ out of school knowledge. Zentralblatt für Didaktik der Mathematik, 33:75-84. Cooper, B. y Harris T. (2002). Children’s responses to contrasting realistic mathematics problems: just how realistic are children ready to be. Educational Studies in Mathematics 49, 1-23. Collado, M.; Bressan, A. yGallego F. (2003). La matemática realista en el aula: el colectivo y las operaciones de suma y resta. Novedades Educativas, 15, 14-19. Dekker, R. y Elshout-Mohr M. (2004).Teacher interventions aimed at mathematical level-raising during collaborative learning. Educational Studies in Mathematics 56, 39-465. de Lange, J. (1987).Mathematics, insight and meaning. Utrecht University: OW&OC. de Lange, J. (1996).“Real problems with real world mathematics”. En: C. Alsina, J.M. Álvarez, M.Niss, A. Pérez, L. Rico y A. Sfard (Eds.), Actas del 8o Congreso de Educación Matemática, Sevilla, 83-110. de Moor, E. (1991). “Geometry instruction (age 4-14) in The Netherlands: the realistic approach”. En: Streefland, L. (Ed.), Realistic Mathematics Education in Primary School, Utrecht: Freudenthal Institute. Dickson, L.; Brown, M. y Gibson, O. (1991).El aprendizaje de las matemáticas. Barcelona: Labor. Elbers, E. (2003). Classroom interaction as reflection: learning and teaching mathematics in a com-munity of inquiry.Educational Studies in Mathematics 54, 77-99. Freudenthal, H. (1968). Why to teach mathematics so as to be useful. Educational Studies in Math-ematics, 1, 3-8. Freudenthal, H. (1973).Mathematics as an educational task. Dordrecht: Reidel. Freudenthal, H. (1983).Didactical phenomenology of mathematical structures. Dordrecht: Kluwer. Freudenthal, H. (1991).Revisiting mathematics education: China lectures. Dordrecht: Kluwer. Gamoran Serrín, M. (2002). A balancing act: developing a discourse community in a mathematics classroom. Educational Studies in Mathematics 5, 205-233. Goffree, F. (2000). “Principios y paradigmas de una educación matemática realista”. En: N. Gorgorió, J. Deulofeu, A. Bishop, G. de Abreu, N. Balacheff, K. Clements, T. Dreyfus, F. Goffree, P. Hilton, P. Nesher y R. Ruthven (Eds.), Matemática y educación - Retos y cambios desde una perspectiva interna-cional, Barcelona: Graô, 151-168. Gravemeijer, K. (1991). “An instructional-theoretical reflection on the use of manipulatives”. En: L. Streefland (Ed.), Realistic mathematics education in Primary School, Utrecht University: Instituto Freudenthal, 55-75. Gravemeijer, K. (1994).Developing realistic mathematics education. Utrecht University: Instituto Freudenthal.Gravemeijer, K. (1999a). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning 1(2), 155-177. Gravemeijer, K. y Doorman, M. (1999b). Context problems in realistic mathematics education: a calculus course as an example. Educational Studies in Mathematics 39, 111-129. Gravemeijer, K.; Cobb, P.; B J. y Whitenack,J. (2000a). “Symbolizing, modeling, and instructional design”. En P. Cobb, E. Yackel y K. McClain (Eds.), Communicating and symbolizing in mathematics, Mahwah, Nueva Jersey. LEA, 225-273. Gravemeijer, K. y Terwel, J. (2000). Hans Freudenthal: A mathematician on didactics and curriculum theory. Curriculum Studies, 32 (6), 777-796. Greer, B. (1993). The mathematical modeling perspective on wor(l)d problems. Journal of Mathe-matical Behavior, 12, 239-250.Keitel, C. (1997). Matemáticas y realidad en la clase. Revista UNO, 12, 49-66. Lave, J. (1997). “Word problems: a microcosm of theories of learning” En P. Light y G. Butterworth (Eds.), Context and cognition, New York: Harvester Wheatsheaf, 74-92. Middleton, J.; Van Den Heuvel-Panhuizen, M. y Shew J. (1998). Using bar representations as a model for connecting concepts of rational number. Mathematics Teaching in the Middle School, 3 (4), 302-312. Middleton, J. y Van Den Heuvel-Panhuizen, M. (1995). The ratio table. Mathematics Teaching in the Middle School, 1 (4), 282-288. Martínez, M.; Da Valle, N.; Bressan, A. y Zolkower, B. (2002). La relevancia de los contextos en la resolución de problemas de matemática. Paradigma, 22 (1), 59-94. Nesher, P. (1980). The stereotypical nature of school word problems. For the Learning of Mathemat-ics, 1 (1), 41-48. National Center for Research in Mathematical Sciences Education y el Instituto Freudenthal (1998).Mathematics in context: a connected curriculum for Grades 5-8. Chicago: Encyclopædia Britannica. Pérez, S.; Bressan A. y Zolkower B. (2006). Las imágenes y las preguntas en la escuela. Novedades Educativas. 18 (182), 22-26. Puig, L. (1997). Análisis fenomenológico. En L. Rico (Eds.), La educación matemática en la enseñanza secundaria, Barcelona: Síntesis, 61-94. Rabino, A.; Bressan, A. y Zolkower, B. (2001). ¿Por qué en un caso sí y en otro no? Novedades Educativas, 13 (129), 16-20. Sadovsky, P. y Sessa, C. (2005). The adidactical interaction with the procedures of peers in the transition from arithmetic to algebra. Educational Studies in Mathematics 59, 85-112. Streefland, L. (1990). “Free productions in the teaching and learning of mathematics”. En K. Gra-vemeijer, M. van den Heuvel-Panhuizen y L. Streefland (Eds.), Contexts, free productions, tests, and geometry in realistic mathematics education, Utrecht University: OW & OC, 33-52. Streefland, L. (1991a).Fractions in realistic mathematics education: a paradigm of developmental research. Dordrecht: Kluwer, Academic Publishers.Streefland, L. (Ed) (1991b).Realistic mathematics education in primary school. Utrecht University: Instituto Freudenthal. Streefland L. y van Ameron B. (1996). “Didactical phenomenology of equations”. En J. Giménez, R. Campos y B. Gómez (eds): Arithmetics and algebra education: searching for the future. Universidad Rovira I Virgili. Tarragona, 120-131. Treffers, A. (1987).Three dimensions: a model of goal and theory description in mathematics educa-tion. Dordrecht: Kluwer. Treffers, A. (1991). “Didactical background of a mathematics program for primary education”. En L. Streefland (Ed.): Realistic mathematics education in primary school. 66- 80. van Ameron B. (2003). Focusing on informal strategies when linking arithmetic to early algebra. Educational Studies in Mathematics 54, 63-75. van den Brink, J. (1984). Numbers in contextual frameworks. Educational Studies in Mathematics, 15, 239-257. van den Brink, J. (1991). Realistic arithmetic education for young children. En L. Streefland (Ed.), Re-alistic mathematics education in primary school. Utrecht University: Instituto Freudenthal, 244-260. van den Heuvel-Panhuizen, M. (1996). Assessment and realistic mathematics education. Utrecht University: Instituto Freudenthal.van den Heuvel-Panhuizen, M. (Ed.) (2001a).Children learn mathematics. Freudenthal Institute (FI), Utrecht University y National Institute for Curriculum Development, The Netherlands. vanden Heuvel-Panhuizen, M. (2001b). Realistic mathematics education in The Netherlands. En J. Anghileri (Ed.), Principles and practices in arithmetic teaching, Buckingham: Open University Press, 49-64. van den Heuvel-Panhuizen, M. (Ed.) (2003). The didactical use of models in realistic mathemati-cal education: an example from a longitudinal trajectory on percentages. Educational Studies in Mathematics 54, 9-35. van Reeuwijk, M. (1995). The role of realistic situations in developing tools for solving systems of equations. Utrecht University: Instituto Freudenthal (www.fi.uu.nl). van Reeuwijk, M. (1997). “Las matemáticas en la vida cotidiana y la vida cotidiana en las matemáti-cas”. En Monografía: Las matemáticas en el entorno. Rev. Uno de Didáctica de la Matemática. GRAO, 12, 9-16. Verschaffel, L. y De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school. Journal for Research in Mathematics Education, 28 (5), 577-601. Verschaffel, L.; De Corte, E. y Vierstraete, H. (1999). Upper elementary pupils’ difficulties in modeling and solving non-standard additive word problems involving ordinal numbers. Journal for Research in Mathematics Education 30(3), 265-285. Zack, V. y Graves, B. (2001). Making mathematical meaning through dialogue. Educational Studies in Mathematics 46, 229-271. Zolkower, B. y Shreyar, S. (2002). Interaction and semiotic apprenticeship in a 6th grade mathematics classroom. En: Proceedings of the 20th PANAMA Conference, Holanda, 141-162. Zolkower, B. y Shreyar, S. (2006).A teacher’s mediation of a thinking aloud discussion in a 6th grade mathematics classroom. Aceptado para publicación en Educational Studies in Mathematics.