La investigación en visualización y razonamiento espacial. Pasado, presente y futuro
Tipo de documento
Autores
Lista de autores
Fernández, Teresa
Resumen
En este trabajo intentaré poner de manifiesto que la visualización sigue siendo un tema de interés para futuras investigaciones en el ámbito de la geometría y el razonamiento espacial. Un breve recorrido por los antecedentes recordará aquellos tópicos que han sido objeto de estudio en este campo y aquellas líneas de investigación que permanecen abiertas. Para terminar expondré los resultados de una investigación reciente que pone de manifiesto las carencias de los futuros maestros en este tema y la importancia de planificar y desarrollar acciones formativas.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Idioma
Revisado por pares
Formato del archivo
Título libro actas
Editores (actas)
Berciano, Ainhoa | Climent, Nuria | Estepa, Antonio | Gutiérrez, Guadalupe
Lista de editores (actas)
Berciano, Ainhoa, Gutiérrez, Guadalupe, Estepa, Antonio y Climent, Nuria
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
19-42
ISBN (actas)
Referencias
Acuña, C. & Larios ,V. (2008). Prototypes and learning of geometry. A reflection on its pertinence and its causes. ICME11. Plenary paper, Topic Study Group 20: Visualization in the teaching and learning of mathematics. Extraído el 16 de julio de 2008 desde http://tsg.icme11.org/document/get/193 Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241. Arrieta, M. (2003). Capacidad espacial y educación matemática: tres problemas para el futuro de la investigación. Educación Matemática, 15 (3), 57-76. Arrieta, M. (2006). La capacidad espacial en la educación matemática: estructura y medida. Educación matemática, 18 (1), 99-132. Arrieta, I. (2011). Un estudio de la capacidad espacial desde laeducación infantil hasta la universidad. II Encuentro AprenGeom. Extraído el 3 de mayo de 2013 desde http://www.ciem.unican.es/node/836 Battista, M. T. (2007). The development of geometric and spatial thinking. In F. Lester, (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 843-908). Charlotte, NC: Information Age Publising. Battista, M. T. (2008). Representations and cognitive objects in modern school geometry. In K. Heid & G. Blume (Eds.), Research on technology in the learning and teaching of mathematics: Syntheses and perspectives. Greenwich, CY: Information Age Publishing Inc. Battista, M. T. & Clements, D. H. (1995). Geometry and Proof. Mathematics Teacher, 88(1), 48-54. Ben-Chaim, D., Lappan, G. & Houang, R.T. (1988). The effect of instruction on spatial visualization skills of middle school boys and girls. American Educational Research Journal, 25, 51-71. Ben-Chaim, D., Lappan, G. & Houang, R.T. (1989). The role of visualization in the middle school mathematics curriculum. Focus on Learning Problems in Mathematics, 11(1), 49- 59. Bishop, A. J. (1983). Space and Geometry. In R. Lesh & M. Landau (Eds), Acquisition of Mathematics Concepts and Process (pp. 175-203). New York: Academic Press. Bishop, A. J. (1989). Review of research on visualization in mathematics education. Focus on Learning Problems in Mathematics, 11 (1), 7-16. Burden & Coulson, S. A. (1981). Processing of spatial tasks. Thesis, Monash University, Melbourne. Clements, D. H. & Battista, M. T. (1992). Geometry and spatial reasoning. In Grouws, D. A. (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 420-464). New York : Macmillan Publishing Co. Cohen, N. (2003). Curved solid nets. In N. Pateman, B. J. Dourgherty & J. Zillox (Eds.), Proceedings of the 27th PME International Conference, 2, 229-236. Cunningham, S. (1991). The visualization environment for mathematics education. In W. Zimmermann & S. Cunningham (Eds.), Visualization in Teaching and Learning Mathematics, 19 (pp. 67-76). Washington, DC, USA: Mathematical Association of America. De Villiers, M. (1994). The role and function of Hierarchical classification of Quadrilaterals. For the learning of Mathematics, 14(1), 11-28. De Villiers, M. (1998) To teach definitions in geometry or teach to define? Proceedings of the 22nd PME International Conference, 2, 248−255. Del Grande, J. J. (1990). Spatial sense. Arithmetic Teacher, 37 (6), 14-20. Diezmann, C. & Lowrie, T. (2009). Primary students ́ spatial visualization and spatial orientation; an evidence base for instruction. En Tzekaki, M.; Kaldrimidou, M. & Sakonidis, H. (Eds.), Proceeding of the 33rd PME International Conference, 2, 417-424. Duval, R. (1995). Geometrical Pictures: Kinds of Representation and specific Processes. In R. Sutherland & J. Mason (Eds.), Exploting mental imagery with computers in mathematical education (pp. 142-157). Berlin: Springer. Duval, R. (1999). Representation, vision and visualization: cognitive functions in mathematical thinking. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st Annual Meeting North American Chapter of the International Group of PME, 3-26. Eisenberg, T. (1994). On understanding the reluctance to visualize. Zentralblatt fur Didactic der Mathematik, 26(4), 109-113. Eisenberg, T. & Dreyfus, T. (1991). On the reluctance to visualize in mathematics. In W. Zimmermann & S. Cunningham (Eds.), Visualization in Teaching and Learning Mathematics, 19 (pp. 25-37). Washington, DC, USA: Mathematical Association of America. Fernández, M. T. (2012). Una aproximación ontosemiótica a la visualización y el razonamiento espacial. Tesis doctoral. Santiago de Compostela. Universidad de Santiago de Compostela. Fernández, M. T. (en prensa). Resultados de una evaluación sobre habilidades de visualización y razonamiento espacial en en futuros profesores de primaria. En A. Estepa, Á. Contreras, J. Deulofeu, M. C. Penalva, F. J. García y L. Ordóñez (Eds.), Investigación en Educación Matemática XVI. Comunicaciones de los grupos de investigación (pp. 285 - 294). Jaén: SEIEM. Fernández, M. T.; Godino, J. D. y Cajaraville, J. A. (2012). Razonamiento geométrico y visualización espacial desde el punto de vista ontosemiótico. Bolema, 26 (42). Fischbein, E. (1990). Intuition and information processing in mathematical activity. International Journal of Educational Research, 14 (1). Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24, 139-162. Fischbein, E. & Nachlieli, T. (1998). Concepts and figures in geometrical reasoning. International Journal of Science Education, 20(10), 1193-1211. Fortuny, J.M., Iranzo, N., Morera, L. (2010). Geometría y tecnología. En M. M. Moreno, A. Estrada, J. Carrillo, & T. A. Sierra, (Eds.), Investigación en Educación Matemática XIV (pp. 69-85). Lleida. SEIEM. Gal, H. & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74 (2), 163-183. Godino, J. D. (2002). Perspectiva ontosemiótica de la competencia y comprensión matemática. La matematica e la sua didattica, 4, 434-450. Godino, J. D. & Batanero, C. (1998). Clarifying the meaning of mathematical objects as a priority area of research in mathematics education. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics Education as a research domain: A search for identity (pp. 177-195). Dordrecht: Kluwer, A. P. Godino, J. D., Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM-The International Journal on Mathematics Education, 39(1–2), 127–135. Godino, J. D., Cajaraville, J. A.; Fernández, T. y Gonzato, M. (2012). Una aproximación ontosemiótica a la visualización en educación matemática. Enseñanza de las Ciencias, 30 (2), 163-184. Godino, J. D.; Fernández, M. T.; Gonzato, M. y Wilhelmi, M. (en prensa). Synergy between visual and analytical languages in mathematical thinking. In procceedings CERME8. Goldin, G. A. (2002). Representation in Mathematical learning and Problem Solving. In Lyn D. English (Ed.), Handbook of International Research in Mathematics Education (pp. 197-218). Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers. Goldin, G.A. (2007). Representation in School Mathematics A Unifying Research Perspective. In J. Kilpatrick (Ed.), A research companion to principles and standards for school mathematics (pp.275-285). Reston: National Council of Teachers of Mathematics. Gonzato, M.; Fernández, T. y Godino, J.D. (2011). Tareas para el desarrollo de habilidades de visualización y orientación espacial: un estudio sistemático basado en la investigación didáctica. Números 77, 99-117. Gorgorió, N. (1996): Choosing a visual strategy: The influence of gender on the solution process of rotation problems. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th P.M.E. Conference, 3, 3-19. Gorgorió, N. (1998). Exploring the functionality of visual and non-visual strategies in solving rotation problems. Educational Studies in Mathematics 35, 207-231. Guillén, G. (2000). Sobre el aprendizaje de conceptos geométricos relativos a los sólidos. Ideas erróneas. Enseñanza de las ciencias, 18(1), 35-53. Guillén, G. (2001). Las relaciones entre familias de prismas. Una experiencia con estudiantes de Magisterio. Enseñanza de las Ciencias 19(3), 415-431. Guillén, G. (2005). Análisis de la clasificación. Una propuesta para abordar la clasificación en el mundo de los sólidos. Educación Matemática, 17(2), 117-152. Guillén, G. (2010). ¿Por qué usar los sólidos como contexto en la enseñanza/aprendizaje de la geometría? ¿Y en la investigación? En M. M. Moreno, A. Estrada, J. Carrillo, & T. A. Sierra, (Eds.), Investigación en Educación Matemática XIV (pp. 69-85). Lleida. SEIEM. Gutiérrez, A. (1991). Procesos y habilidades en visualización espacial. En A. Gutiérrez (Ed.), Memorias del 3er Congreso Internacional sobre Investigación Matemática: Geometría (pp. 44-59). México D.F.: CINVESTAV. Gutiérrez, A. (1996a). Visualization in 3-dimensional geometry: In search of a framework. In L. Puig & A. Gutierrez (Eds.), Proceedings of the 20th PME International Conference, 1, 3-19. Gutiérrez, A. (1996b). The aspect of polyhedra as a factor influencing the studients’ ability for rotating them. In Batturo, A.R. (Ed.), New directions in geometry education (pp. 23-32). Brisbane, Australia: Centre for Math. and Sc. Education, Q.U.T. Gutiérrez, A. (1998). Tendencias actuales de investigación en geometría y visualización. Text of an invited conference in "Encuentro de Investigación en Educación Matemática", TIEM-98. Centre de Recerca Matemàtica, Institut d’Estudis Catalans, Barcelona), manuscript. Healy, L. & Hoyles, C. (2001). Software tools for geometrical problem solving: Potentials and pitfalls. International journal of Computers for Mathematical Learning, 6, 235-256. Hershkowitz, R. (1989). Visualitation in geometry- Two sides of the coin. Focus on Learning Problems in Mathematics, 11(1), 61- 76. Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher, P. y J. Kilpatrick (Eds), Mathematics and cognition: A research synthesis by the International Group for the psychology of mathematics education (pp. 70-95). Cambridge: Cambridge U.P. Hershkowitz, R., Parzysz, B. & Dormolen, J. Van (1996). Space and shape. In, A. J. Bishop et al. (Eds), International Handbook of Mathematics Education. (pp. 161-204). London: Kluwer. Hill, H. C., Ball, D. L. & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific knowledge of students. Journal for Research in Mathematics Education, 39, 372-400. Jones, K. (2000). Providing a foundation for deductive reasoning: Student’s interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational studies in Mathematics, 44(1/2), 55-85. Kozhevnikov, M., Hegarty, M. & Mayer, R.E. (2002). Revising the visualizer –Verbalizer dimension: evidence for two types of visualizers. Cognition and Instruccion, 20, 47-77. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago, IL: University of Chicago Press. Laborde, C. (1993). The computer as part of the learning environment: The case of geometry. In C. Keitel & K. Ruthven (Eds.), Learning from computers: Mathematics education and technology, 121, 48-67. Malara, N. (1998). On the difficulties of visualization and representation of 3D objects in middle school teachers. En Olivier, A y Newstead, K. (Eds.), Proceedings of the 22nd PME International Conference, 3, 239-246. Marcou & Gagatsis (2003). A theoretical taxonomy of external systems of representation in the learning and understanding of matehamtics. In A. Gagatsis & I. Elia, (Eds.), Representations and geometrical models in the learning of mathematics, 1, (pp. 171-178). Nicosia: Intercollege Press. Mariotti, M.A. (2001). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6, 257-281. Markopoulus, C. & Potari, D. (1996). Thinking about geometrical shapes in a computer environment. In L. Puig, L. & A. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International Group for the Mathematics Education, 337-334. Marrades, R. & Gutiérrez, A. (2000): Proofs produced by secondary school students learning geometry in a dynamic computer environment, Educational Studies in Mathematics 44(1/2), 87-125. MEC (2006). Real Decreto 1513/2006, de 7 de diciembre, por el que se establecen las enseñanzas mínimas de la Educación primaria. Mitchelmore, M.C. (1980). Three dimensional geometrical drawing in three cultures. Educational studies in Mathematics, 11, 205-216. National Research Council (2006). Learning to think Spatially: GIS as a Support System in the K-12 Curriculum. Washington, D.C.: Author. Nemirovsky, R. & Noble, T. (1997). On mathematical visualization and the place where we live. Educational Studies in Mathematics, 33(2), 99-131. National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school mathematics. EEUU: National Council of Teachers of Mathematics. (Edición electrónica: http://standards.nctm.org/). Orton, J. (1997). Pupil’s perception of pattern in relation to shape. In E. Pehkonen (Ed.), Proceedings of the 21th PME International Conference, 3, 304-311. Pallascio, R. Allaire, A. & Mongeau P. (1993). The development of Spatial Competencies through alternating analytic and synthetic activities. For the learning of mathematics, 13(3), 8-15. Peirce, C. S. (1965). Obra lógico-semiótica. Madrid: Taurus, 1987. Phillips, L.M., Norris, S.P., & Macnab, J.S. (2010). Visualization in mathematics, reading and science education. Dordrecht, The Netherlands: Springer. Pittalis, M.; Mousoulides, N. & Andreou, A. (2009). Construction of dynamic visual images of 3D Geometry shapes. In C. Bardini, P. Fortin, A. Oldknow & D. Vagost (Eds.), Proceedings of the 9th International Conference on Technology in Mathematics Teaching. Extraído el 2 de febrero de 2010 desde http://www.ictmt9.org/files/contributors/28f9525538800f9ebcdf852e2f425baa/PITTALIS_Dynamic%20 visualisation_fullpaper.pdf Pittalis, M.; Mousoulides, N. & Christou, C. (2009). Level of sophistication in representing 3D shapes. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceeding of the 33rd PME International Conference, 4, 385-392. Polo, I. y González, M. J (2010). Visualización 3D para maestros en formación. I Encuentro AprenGeom. Extraído el 3 de mayo de 2013 desde http://www.ciem.unican.es/node/800 Pratt & Davison (2003). Interactive whiteboards and the construction of definitions for the kite. In N. Pateman, B. J. Dourgherty & J. Zillox (Eds.), Proceedings of the 27th PME International Conference, 4, 31-38. Presmeg, N. C. (1986a). Visualization and mathematical gittedness. Educational studies in Mathematics, 17, 297-311. Presmeg, N. C. (1986b). Visualisation in high school mathematics. For the Learning of Mathematics, 6 (3), 42-46. Presmeg, N. C. (1989). Visualization in multicultural mathematics classrooms. Focus on Learning Problems in Mathematics, 11(1), 17- 24. Presmeg, N. C. (1991). Classroom aspects which influence use of visual imagery in high school mathematics. In Furinghettti (Ed.), Proceedings of the 15th PME International Conference, 3, 191-198. Presmeg, N. C. (1992). Prototypes, metaphors, metonymies and imaginative rationality in high school mathematics. Educational studies in Mathematics, 23, 595-610. Presmeg, N. C. (1997). Generalization using imagery in mathematics. In L. D. English (Ed.), Mathematical Reasoning: analogies, metaphors and metonymies in mathematics learning (pp. 299-312). Mahwah, NJ: Erlbaum. Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 205-235). Rotterdam, The Netherlands: Sense Publishers. Presmeg, N. C. (2008). An overarching theory for research in visualization in mathematics education. ICME11. Plenary paper, Topic Study Group 20: Visualization in the teaching and learning of mathematics. Extraído el 16 de julio de 2008 desde http://tsg.icme11.org/document/get/97 Presmeg, N. C. & Bergsten, C. (1995). Preference for visual methods: An international study. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th PME International Conference, 3 58-65. Ramirez, R., Flores, P. y Castro, E. (2010). Visualización y talento matemático: una experiencia docente. En M. M. Moreno, A. Estrada, J. Carrillo, & T. A. Sierra, (Eds.), Investigación en Educación Matemática XIV (pp. 499-510). Lleida. SEIEM. Ramírez, R.; Flores, P. y Castro, E. (2012). Habilidades de visualización manifestadas por los alumnos con talento matemático en tareas geométricas. En M. Marín-Rodríguez; N. Climent-Rodríguez (eds.), Investigación en Educación Matemática. Comunicaciones de los grupos de investigación. XV Simposio de la SEIEM (pp. 11-26). Ciudad Real: SEIEM. Rivera, F. D. (2011). Toward a visually-oriented school mathematics curriculum. Research, theory, practice, and issues. Dordrecht: Springer. Roth, W. M. (2004). Towards an anthropology of graphing: Semiotic and activity-theoretic perspectives. Dordrecht: Kluwer Academic Publishers. Ryu, H., Chong, Y., Song, S. (2007). Mathematically gifted students spatial visualization abiltiy of solid figures. En Proceedings of the 31st Conference of the International Group for PME, Vol. 4, pp. 137-144. Seoul: PME. Sack, J. & Vazquez, I. (2008). Three-dimensional visualization: Children’s non-convencional verbal representations. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano y A. Sepúlpeda, (Eds.), Proceeding of the Joint Meeting 32nd Conference of the international Group for the psychology of Mathematics Education and the North American chapter XXX, 4 (pp. 217-224). Morealia, Michoacán, México: PME. Sánchez, F. (2011). Estrategias de resolución geométrica por insight. II Encuentro AprenGeom. Extraído el 3 de mayo de 2013 desde http://www.ciem.unican.es/node/836 Sinclair, M.P. (2003). The provision of accurate images with dynamic geometry. In N. Pateman, B. J. Dougherty & J. Zillox (Eds.), Proccedings of the 27th PME International Conference, 4, 191-198. Soto-Andrade, J. (2008). Mathematics as the art of seeing the invisible. ICME11. Plenary paper, Topic Study Group 20: Visualization in the teaching and learning of mathematics. Extraído el 16 de julio de 2008 desde http://tsg.icme11.org/ document/get/771 Stylianou, D. (2001). On the reluctance to visualize in mathematics: Is the picture changing? In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th PME International Conference, 4, 225-232. Vinner, S. (1989). The avoidance of visual considerations in calculus students. Focus on Learning Problems in Mathematics, 11(2), 149-155. Vinner, S. & Hershkowitz, R. (1983). On concept formation in geometry. Zentralblatt für Mathematik, 83(1), 20-25. White, P., & Mitchelmore, M. C. (2003). Teaching angle by abstraction from physical activities with concrete materials. In N. A. Pateman, B. J. Dougherty & J. Zilliox (Eds.), Proceedings of the 27th Annual Conference of the International Group for the Psychology of Mathematics Education, 4, 403-410. Woolner, P. (2004). A comparison of a visual-spatial approach and a verbal approach to teaching mathematics. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th PME International Conference, 4, 449-456. Zazkis, R.; Dubinsky, E. & Dautermann, J. (1996). Using visual and analytic strategies: A study of students’ understanding of permutation and symmetry groups. Journal for Research in Mathematics Education, 27(4), 435-457. Zimmermann, W. & Cunningham, S. (Eds.) (1991). Visualization in Teaching and Learning Mathematics, 19. Washington, DC, USA: Mathematical Association of America.