Las relaciones intrafigurales e interfigurales de los cuadriláteros: rectángulo, paralelogramo y rombo
Tipo de documento
Autores
Lista de autores
Mazo, Olga Lucía y Suárez, Víctor Mario
Resumen
El presente trabajo investigativo, muestra los resultados del análisis acerca de la forma como construyen los estudiantes de 5° las relaciones intrafigurales e interfigurales de los rectángulos, paralelogramos y rombos, a partir de las representaciones semióticas de dichas figuras geométricas.
Fecha
2009
Tipo de fecha
Estado publicación
Términos clave
Formas geométricas | Gráfica | Reflexión sobre la enseñanza | Semiótica | Tipos de metodología
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Tipo de tesis
Institución (tesis)
Referencias
ACOSTA, J. (1996). Una estrategia para la enseñanza de la geometría en educación básica secundaria. Tesis de maestría. Universidad de Antioquia, Medellín Colombia BEDOYA J. et al (2008). Situaciones problema para la enseñanza y el aprendizaje de las relaciones intra e inter figurales en los triángulos. Tesis de Pregrado. Universidad de Antioquia, Medellín Colombia. DE VILLIERS, M. (1994), The Role and Function of a Hierarchical Classification of Quadrilaterals. For the Learning of Mathematics, Vol. 14, No.1, p.11- 18. CHAMORRO, M. C. (2006). Didáctica de las Matemáticas para Primaria. Madrid: Pearson Prentice Hall. CLIMENT, N. & CARRILLO, J. (s. f.). Proyecto "mete" (mathematics education traditions of Europe): polígonos en primaria. [Versión electrónica] Universidad de Huelva. DUVAL, R. (1999). Semiosis y Pensamiento Humano. Registros semióticos y aprendizajes intelectuales. Bogotá: PeterLang S. A. Editions, FISCHBEIN, E. (2002, trad.). La teoría de los conceptos figurales. [Versión Electrónica] en: http://www.uaq.mx/matematicas/vlarios/cursos/tem-txt31.pdf. GUTIÉRREZ, A. (1998). Tendencias actuales en geometría y visualización. [Versión Electrónica] JAIME, A., CHAPA, F., & GUTIÉRREZ, A. (1992). Definiciones de triángulos y cuadriláteros: errores e inconsistencias en libros de texto de E.G.B. [Versión Electrónica] Valencia: Universidad de Valencia. JARAMILLO, D. (2003). (Re) Constituigáo do ideário de futuros professores de matemática num contexto de investigagáo sobre a prática pedagógica. Tesis de doctorado. Universidade Estadual de Campinas. Facultade de educagáo. Sáo Paulo. JARAMILLO, V. (1986). Elementos de Geometría Plana. Medellín. Fondo Editorial Universidad Eafit. MARTÍNEZ, C. (julio 2006). El método estudio de caso: estrategia metodológica de la investigación científica. En pensamiento y gestión (Barranquilla).No 20. P. 165-193 MEN. (1998). Lineamientos curriculares de matemáticas. Bogotá: Magisterio. MEN. (2003). Estándares Básicos de Competencias en Matemáticas. Bogotá: Magisterio. MESA, O. (2000). Estrategias de intervención en la iniciación de la geometría en los primeros tres grados de la educación básica primaria. Trabajo de investigación. Universidad de Antioquia. Facultad de educación. Centro de investigaciones, Medellín SCAGLIA, S. & MORIENA, S. (2005). Prototipos y Estereotipos en Geometría. [Versión Electrónica] México: Santillana. SCAGLIA, S. y RENZULLI F. (2006). Clasificación de cuadriláteros en estudiantes de egb3 y futuros profesores de nivel inicial [Versión Electrónica] TORREGROSA, G., QUESADA, H. (2007). Coordinación de Procesos Cognitivos en Geometría. [Versión Electrónica] Revista Latinoamericana de Investigación en Matemática Educativa, 10(2), 275-300. VASCO, C. (1994).Un Nuevo Enfoque para la enseñanza de la Matemática. Serie Pedagogía y Currículo. Volumen II. MEN.
Proyectos
Cantidad de páginas
97