Prácticas algebraicas en los primeros cursos de educación primaria
Tipo de documento
Autores
Lista de autores
Brizuela, B.
Resumen
En el presente trabajo comparto ejemplos de estudios anteriores, así como también de estudios en curso donde investigamos el uso de prácticas algebraicas en los primeros cursos de educación primaria en escuelas en el noreste de Estados Unidos. Específicamente, en este trabajo me centraré en dos prácticas clave en estas edades tempranas: la representación y la generalización. Argumento que, así como hemos identificado a las funciones como contenido unificador para el álgebra escolar, las prácticas algebraicas también funcionan como unificadoras para la educación matemática escolar.
Fecha
2023
Tipo de fecha
Estado publicación
Términos clave
Generalización | Otro (álgebra) | Otro (funciones) | Reflexión sobre la enseñanza | Tipos de metodología
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Título libro actas
Editores (actas)
Badillo, Edelmira | Ivars, Pedro | Jiménez-Gestal, Clara | Magreñán, Ángel Alberto
Lista de editores (actas)
Badillo, Edelmira, Ivars, Pedro, Jiménez-Gestal, Clara y Magreñán, Ángel Alberto
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
43 - 57
ISBN (actas)
Referencias
Blanton, M. (2008). Algebra and the elementary classroom: Transforming thinking, Transforming practice. Heinemann. Blanton, M., Brizuela, B. M., Gardiner, A. M., Sawrey, K. y Newman-Owens, A. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95, 181–202. DOI: 10.1007/s10649-016-9745-0 Blanton, M. L. y Kaput, J. J. (2011). Functional thinking as route into algebra in elementary grades. En J. Cai y E. Knuth (Eds.), Early algebraization (pp. 5–23). Springer. Blanton, M., Levi, L., Crites, T. y Dougherty, B. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in Grades 3-5. NCTM. Blanton, M., Stroud, R., Stephens, A., Gardiner, A. M., Stylianou, D. A., Knuth, E., Isler-Baykal, I. y Strachota, S. (2019). Does early algebra matter? The effectiveness of an early algebra intervention in Grades 3 to 5. American Educational Research Journal, 56(5), 1930–1972. DOI: 10.3102/0002831219832301 Brizuela, B. M. y Alvarado, M. (2010). First graders’ work on additive problems with the use of different notational tools. Revista IRICE Nueva Época, 21, 37–43. https://doi.org/10.35305/revistairice.v21i21.506 Brizuela, B. M., Blanton, M. y Kim, Y. (2021). A Kindergarten student’s uses and understandings of tables while working with function problems. En A. G. Spinillo, S. L. Lautert y R. E. Borba (Eds.), Mathematical reasoning of children and adults: teaching and learning from an interdisciplinary approach (pp. 171-190). Springer International Publishing. Brizuela, B. M., Blanton, M., Sawrey, K., Newman-Owens, A. y Gardiner, A. M. (2015). Children’s use of variables and variable notation to represent their algebraic ideas. Mathematical Thinking and Learning, 17, 1-30. DOI: 10.1080/10986065.2015.981939 Brizuela, B. M. y Earnest, D. (2008). Multiple notational systems and algebraic understandings: The case of the “best deal” problem. En J. Kaput, D. Carraher y M. Blanton (Eds.), Algebra in the Early Grades (pp. 273-301). Lawrence Erlbaum and Associates. Brizuela, B. M. y Lara-Roth, S. (2002). Additive relations and function tables. Journal of Mathematical Behavior, 20(3), 309–319. DOI: 10.1016/S0732-3123(02)00076-7 Brizuela, B. M., Martinez, M. V. y Cayton-Hodges, G. A. (2013). The impact of early algebra: Results from a longitudinal intervention. Journal of Research in Mathematics Education/Revista de Investigación en Didáctica de las Matemáticas (REDIMAT), 2(2), 209-241. DOI: https://doi.org/10.4471/redimat.2013.28 Cai, J. y Knuth, E. (Eds.). (2011). Early algebraization: A global dialogue from multiple perspectives. Springer. Carraher, D. W. y Schliemann, A. D. (2007). Early algebra and algebraic reasoning. En F. Lester, (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (p. 669–706). Information Age Publishing. Cooper, T. y Warren, E. (2011). Years 2 to 6 students’ ability to generalize: Models, representations, and theory. En J. Cai y E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives. Advances in Mathematics Education Monograph Series (pp. 187-214). Springer. Cusi, A., Malara, N. A. y Navarra, G. (2011). Theoretical issues and educational strategies for encouraging teachers to promote a linguistic and metacognitive approach to early algebra. En J. Cai y E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives. Advances in Mathematics Education Monograph Series (pp. 483-510). Springer. Dougherty, B. (2008). Measure up: A quantitative view of early algebra. En J. Kaput, D. W. Carraher y M. Blanton (Eds.), Algebra in the early grades (pp. 389-412). Lawrence Erlbaum Associates/Taylor & Francis Group. Dougherty, B. J. (2010). A DavydovaApproach to early mathematics. En Z. Usiskin, K. Andersen y N. Zotto (Eds.), Future curricular trends in algebra and geometry (pp. 63–69). Information Age Publishing. Ehrenberg, A. S. C. (1986). Reading a table: An example. Applied Statistics, 35(3), 237–244. Freudenthal, H. (1982). Variables and functions. En G. V. Barneveld y H. Krabbendam (Eds.), Proceedings of conference on functions (pp. 7-20). National Institute for Curriculum Development. Fuentes, S. y Cañadas, M. C. (2021). Funciones f(x)=3x y f(x)=5x en primero de primaria: estrategias y representaciones utilizadas por alumnos. En P. D. Diago, D. F. Yáñez, M. T. González-Astudillo y D. Carrillo, (Eds.), Investigación en Educación Matemática XXIV (pp. 269–277). SEIEM. Fuentes, S. y Cañadas, M. C. (2022). Evidencias de pensamiento funcional en una niña de 4 años: Estrategias y representaciones. En T. F. Blanco, C. Núñez-García, M. C. Cañadas y J. A. González-Calero (Eds.), Investigación en Educación Matemática XXV (pp. 269-276). SEIEM. Hamley, H. R. (1934). Relational and functional thinking in mathematics: The 9th Yearbook of NCTM. Bureau of Publications, Teachers College, Columbia University. Kaput, J. (1991). Notations and representations as mediators of constructive processes. En E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 53-74). Kluwer Academic Publishers. Kaput, J. (2008). What is algebra? What is algebraic reasoning? En J. Kaput, D. W. Carraher y M. Blanton (Eds.), Algebra in the early grades (pp. 5-17). Lawrence Erlbaum Associates/Taylor & Francis Group. Kaput, J., Blanton, M. y Moreno, L. (2008). Algebra from a symbolization point of view. En J. Kaput, D. W. Carraher y M. Blanton (Eds.), Algebra in the early grades (pp. 19-56). Lawrence Erlbaum Associates/Taylor & Francis Group. Kaput, J., Carraher, D. y Blanton, M. (Eds). (2008). Algebra in the early grades. Lawrence Erlbaum Associates. Knuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A. y Stephens, A. C. (2011). Middle school students’ understanding of core algebraic concepts: Equivalence and variable. En J. Cai y E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives. Advances in Mathematics Education Monograph Series (pp. 259-276). Springer. Küchemann, D. E. (1981). Algebra. En K. Hart (Ed.), Children’s understanding of mathematics (pp. 102- 119). Murray. MacGregor, M. y Stacey, K. (1997). Students’ understanding of algebraic notation: 11-15. Educational Studies in Mathematics, 33(1), 1-19. Martí, E. (2009). Tables as cognitive tools in primary education. En C. Andersen, N. Scheuer, M. P. Pérez Echeverría y E. Teubal (Eds.), Representational systems and practices as learning tools (pp. 133–148). Sense Publishing. Mason, J. (1996). Expressing generality and roots of algebra. En N. Bednarz, C. Kieran y L. Lee (Eds.), Approaches to algebra. Perspectives for research and teaching (pp. 65-86). Kluwer Academic Publishers. Morris, A. K. (2009). Representations that enable children to engage in deductive arguments. En D. Stylianou, M. Blanton y E. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 87-101). Routledge. Moses, R. y Cobb, C. (2001). Radical equations: Civil rights from Mississippi to the algebra project. Beacon Press. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Autor. National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Council of Chief State School Officers. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf Saxe, G. B. (1999). Cognition, development, and cultural practices. New Directions for Child and Adolescent Development, 83, 19-35. DOI: 10.1002/cd.23219998304 Saxe, G. B. (2005). Practices of quantification from a sociocultural perspective. En A. Demetriou y A. Raftopoulos (Eds.), Cognitive developmental change: Theories, models, and measurement (pp. 241–263). Cambridge University Press. Saxe, G. B. y Esmonde, I. (2005). Studying cognition in flux: A historical treatment of fu in the shifting structure of oksapmin mathematics. Mind, Culture, and Activity, 12(3-4), 171-225. DOI: 10.1207/s15327884mca123&4_2 Schifter, D. (2009). Representation-based proof in the elementary grades. En D. Stylianou, M. Blanton y E. Knuth (Eds.), Teaching and learning proof across the grades: A K–16 perspective (pp. 71–86). Taylor & Francis Group. Schliemann, A. D., Carraher, D. W. y Brizuela, B. M. (2001). When tables become function tables. En M. van der H.-P. (Ed.), Proceedings of the 25th conference of the International Group for the PME (vol. 4, pp. 145-152). Freudenthal Institute. Schliemann, A. D., Carraher, D. W. y Brizuela, B. M. (2007). Bringing out the algebraic character of arithmetic: From children’s ideas to classroom practice. Lawrence Erlbaum and Associates. Schliemann, A. D., Carraher, D. W. y Brizuela, B. M. (2012). Algebra in elementary school. En Coulange, L., Drouhard, J.-P., Dorier, J.-L. y Robert, A. (Eds.) Recherches en Didactique des Mathématiques, Numéro spécial hors-série, Enseignement de l’algèbre élémentaire: bilan et perspectives (pp. 103-118). La Pensée Sauvage. Schliemann, A.D., Carraher, D.W. y Caddle, M. (2013). From seeing points to seeing intervals in number lines and graphs. En B. Brizuela y B. Gravel (Eds.) Show me what you know: Exploring representations across STEM disciplines (pp. 223-243). Teachers College Press. Schwartz, J. (1990). Getting students to function in and with algebra. En G. Harel y E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 261-289). Mathematics Associations of America. Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36. Sfard, A. (2000). Symbolizing mathematical reality into being: How mathematical discourse and mathematical objects create each other. En P. Cobb, K. E. Yackel y K. McClain (Eds.), Symbolizing and communicating: perspectives on Mathematical Discourse, Tools, and Instructional Design (pp. 37-98). Erlbaum. Tanisli, D. (2011). Functional thinking ways in relation to linear function tables of elementary school students. The Journal of Mathematical Behavior, 30(3), 206–223. DOI: 10.1016/j.jmathb.2011.08.001 Torres, M. D., Brizuela B., Cañadas, M. C. y Moreno, A. (2021). Primeras experiencias con una tabla en segundo de Educación Primaria. Aproximación funcional al pensamiento algebraico. En P. D. Diago, D. F. Yáñez, M. T. González-Astudillo y D. Carrillo (Eds.), Investigación en Educación Matemática XXIV (pp. 603 – 611). SEIEM. Torres, M. D., Brizuela, B. M., Cañadas, M. C. y Moreno, A. (2022). Introducing tables to second-grade elementary students in an algebraic thinking context. Mathematics, 10, 56. https://doi.org/10.3390/math10010056 Torres, M. D., Cañadas, M. C. y Moreno, A. (2018). Estructuras, generalización y significado de letras en un contexto funcional por estudiantes de 2º de primaria. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 574-583). SEIEM. Ventura, A. C., Brizuela, B. M., Blanton, M. Sawrey, K., Gardiner, A. M. y Newman-Owens, A. (2021). A learning trajectory in kindergarten and first grade students’ understanding of variable and use of variable notation to represent indeterminate quantities. Journal of Mathematical Behavior, 62. https://doi.org/10.1016/j.jmathb.2021.100866