Propuesta didáctica para la construcción del concepto de variable como número general basada en el modelo 3UV
Tipo de documento
Autores
Lista de autores
Cabrera, Ronald y Castillo, Carlos
Resumen
En este proyecto se presentan algunos aspectos fundamentales en los procesos de enseñanza-aprendizaje del concepto de la variable como número general en estudiantes pertenecientes a cinco grados diferentes de enseñanza media del instituto técnico Benjamín Herrera de la ciudad de Ibagué, teniendo como referentes principales el modelo 3UV (3 Usos de la Variable) Trigueros y Ursini, (2003); Ursini, et al., (2005) y el aprendizaje instrumental y relacional planteado por (Skemp, 1978). Para lo cual se han realizado una secuencia de actividades encaminadas a estos educandos por medio de una metodología apropiada, de tal manera que les permita apropiarse del concepto en distintas facetas, interpretativa, aplicativa, analítica, y reflexiva que conlleve a un aprendizaje con comprensión y significado; no simplemente reducido a la aplicación de reglas o algoritmos sin sentido. En este proyecto se hace una invitación a la reflexión sobre cómo se está enseñando las matemáticas en nuestro contexto colombiano, sobre la importancia de generar un desarrollo del pensamiento Variacional desde edades tempranas, para fortalecer el paso de la aritmética al algebra; en cuanto a esto, es muy importante integrar al currículo actividades que pensadas desde lo aritmético y geométrico potencialicen el razonamiento algebraico.
Fecha
2017
Tipo de fecha
Estado publicación
Términos clave
Comprensión | Ecuaciones e inecuaciones | Polinomios | Razonamiento | Usos o significados
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Tipo de tesis
Institución (tesis)
Referencias
Agudelo Valderrama, C (2000). Una innovación curricular que enfoca el proceso de transición entre el trabajo aritmético y el algebraico. Tunja: universidad Pedagógica y Tecnológica de Colombia. Agudelo-Valderrama, C. (2005). Explicaciones de ciertas actitudes hacia el cambio: las concepciones de profesores y profesoras de matemáticas colombianos(as) sobre los factores determinantes de su práctica de enseñanza del álgebra escolar, Revista EMA, 10(2)- 10(3), 375-412. Agudelo-Valderrama, C. (2007). La creciente brecha entre las disposiciones educativas colombianas, las proclamaciones oficiales y las realidades del aula de clase: Las concepciones de profesores y profesoras de matemáticas sobre el álgebra escolar y el propósito de su enseñanza, Revista Electrónica Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 5(1), 43-62. Artacho, A. (2015). Solución al reto de las 54 cerillas y los cuadrados. España, Matematicascercanas.com. Recuperado de https://matematicascercanas.com/sobreel-blog-y-su-autor/ Ausubel, D. P., Novak, J. D. & Hanesian, H. (1989). Psicología cognitiva. Un punto de vista cognoscitivo. Méjico. Trillas. Booth, L. (1984). Algebra: Children’s Strategies and Errors. Windsor (NFER-Nelson: Windsor). Booth, L. (1988). Children’s difficulties in beginning algebra. In A.F. Coxford & A.P. Shulte (Eds.), The Ideas of Algebra, K-12. 1988 Yearbook. Reston, VA: The National Council of Teachers of Mathematics. 151 Cuaderno de cultura científica. (2014). El salto de la rana, y familia. Bilbao, España. Recuperado de: https://culturacientifica.com/2014/01/15/el-salto-de-la-rana-y-familia/ Giordan, A. (1996). ¿Cómo ir más allá de los modelos constructivistas?. La utilización didáctica de las concepciones de los estudiantes. Investigación en la Escuela, 28, 7- 22. Grupo Azarquiel. (1993). Ideas y actividades para enseñar álgebra. Síntesis N º 33. España. Grupo Pretexto. (1999). Transición aritmética álgebra. 2 Ed., Bogotá. Universidad Distrital Francisco José de Caldas. Kieran, C. (1989). The Early Learning of Algebra: A Structural Perspective. Research Issues in the Learning and Teaching of Algebra, Vol. 4. Reston (Virginia): National Council of Teachers of Mathematics. Küchemann, D. E. (1980). The understanding of generalised arithmetic by secondary school children. Unpublished doctoral dissertation. Chelsea College, University of London. Küchemann, D. (1981). Algebra. Children's understanding of mathematics. London: John Murray. Martínez, J. R. (2004). Concepción de aprendizaje, metacognición y cambio conceptual en estudiantes universitarios de psicología. Universidad de Barcelona. Recuperado de: https://dialnet.unirioja.es/servlet/tesis?codigo=3417 Mason, J. (1996). Expressing generality and roots of algebra. Approaches to algebra. Perspectives for research and teaching. Dordrecht: Kluwer. 152 Mason, J.; Graham, A.; Pimm, D. & Gowar, N. (2014). Raíces del algebra y rutas hacia el álgebra. Ibagué. Universidad del Tolima. Ministerio de Educación Nacional. (1998). Lineamientos Curriculares de Matemáticas. Cooperativa Editorial Magisterio. Recuperado de: https://www.mineducacion.gov.co/1621/articles-89869_archivo_pdf9.pdf Ministerio de Educación Nacional. (2002). Estándares curriculares para las áreas de matemáticas, lengua castellana y ciencias naturales y educación ambiental para la educación preescolar, básica y media. Recuperado de: www.mineducacion.gov.co Ministerio de Educación Nacional. (2006). Estándares Básicos de Competencias en Matemáticas. Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias Y Ciudadanas, 46–95. Moreira, M. A. (2011). Unidades de Enseñanza Potencialmente Significativas – UEPS. Aprendizaje Significativa en Revista. Porto Alegre. v. 1, n. 2, 43-63. Osborne, R. J. & Witrock, M.C. (1983). Learning science: A generative process. Science Education, 67, 489-508. Rodrigo M. J.; Rodríguez A. & Marrero J. (1993). Las teorías implícitas: Una aproximación al conocimiento cotidiano. Primera edición. Madrid: Visor. Skemp, R. (1978). Relational understanding and instrumental understanding. Arithmetic Teacher 26(3), 9-15. Stenhouse, L. (1984). Investigación y desarrollo del currículo. Madrid: Morata Trigueros, M. & Ursini, S. (2003). First-year Undergraduates’ Difficulties in Working with Different Uses of Variable. En Annie Selden, Ed Dubinsky, Guershon Harel y Fernando 153 Hitt (eds.), CBMS Issues in Mathematics Education, vol. 12. Research in Collegiate Mathematics Education V, American Mathematical Society in cooperation with Mathematical Association of America, vol. V, 1-29 Ursini, S., Escareño, F., Montes, D. & Trigueros, M. (2005). Enseñanza del Álgebra elemental. Una propuesta alternativa. Trillas: México
Proyectos
Cantidad de páginas
156