Razonamiento inferencial informal: un estudio sobre los aspectos estructurales
Tipo de documento
Autores
Lista de autores
Estrella, Soledad y Méndez-Reina, Maritza.
Resumen
El estudio integra aspectos estructurales del razonamiento inferencial informal y los conceptos clave propios de la inferencia estadística, con el propósito de examinar la estructura argumental de las inferencias estadísticas informales producidas por dos estudiantes de grado 3. Mediante los modelos de Peirce y de Toulmin se analizan aspectos estructurales de estos razonamientos provocados por un experimento aleatorio en un escenario lúdico, caracterizándose elementos discursivos de la estructura de las inferencias estadísticas informales generadas por los estudiantes de primaria. Se proyecta avanzar en aspectos procesuales ligados a las predicciones, conjeturas, hipótesis y generalizaciones derivadas de este razonamiento.
Fecha
2023
Tipo de fecha
Estado publicación
Términos clave
Generalización | Inferencial | Organización y representación de datos | Otro (razonamiento) | Pensamientos matemáticos
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Título libro actas
Educación matemática en las américas 2023. Investigación (volumen 10)
Editores (actas)
González, Sarah | Morales, Yuri | Ruiz, Ángel | Scott, Patrick
Lista de editores (actas)
González, Sarah, Morales, Yuri, Ruiz, Ángel y Scott, Patrick
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
361 - 368
ISBN (actas)
Referencias
Abu-Ghalyoun, O. (2021). Pre-service teachers’ difficulties in reasoning about sampling variability. Educational Studies in Mathematics, 108(3), 553–577. https://doi.org/10.1007/s10649-021-10067-8 Aridor, K., & Ben-Zvi, D. (2017). The co-emergence of aggregate and modelling reasoning. Statistics Education Research Journal, 16(2), 38–63. https://doi.org/10.52041/serj.v16i2.184 Ben-Zvi, D., Aridor, K., Makar, K., & Bakker, A. (2012). Students’ emergent articulations of uncertainty while making informal statistical inferences. ZDM, 44(7), 913–925. https://doi.org/10.1007/s11858-012-0420-3 Ben-Zvi, D., Gil, E., & Apel, N. (2007). What is hidden beyond the data? Helping young students to reason and argue about some wider universe. In Proceedings ofthe Fifth International Research Forum on Statistical Reasoning, Thinking, and Literacy (SRTL-5). University of Warwick, UK. de Vetten, A., Schoonenboom, J., Keijzer, R., & van Oers, B. (2018). The development of informal statistical inference content knowledge of pre-service primary school teachers during a teacher college intervention. Educational Studies in Mathematics, 99(2), 217–234. https://doi.org/10.1007/s10649-018-9823-6 Estrella, S., Mendez-Reina, M. & Vidal-Szabó, P. (2022b). Online experiences with early statistics: third-graders’ informal inferential arguments [Manuscript submitted for publication]. Pontificia Universidad Católica de Valparaíso. Estrella, S., Mendez-Reina, M., Olfos, R., & Aguilera, J. (2022a). Early statistics in kindergarten: analysis of an educator's pedagogical content knowledge in lessons promoting informal inferential reasoning. International Journal for Lesson and Learning Studies, 11(1), 1–13. Fischbein, E. (1987/2002). Intuition in science and mathematics. Springer. https://doi.org/10.1007/0-306-47237-6 Gil, E., & Ben-Zvi, D. (2011). Explanations and Context in the Emergence of Students' Informal Inferential Reasoning. Mathematical Thinking and Learning, 13(1–2), 87–108. https://doi.org/10.1080/10986065.2011.538295 Gómez-Blancarte, A., & Tobías-Lara, M. G. (2018). Using the Toulmin model of argumentation to validate students’ inferential reasoning. In M. A. Sorto, A. White, & L. Guyot (Eds.), Looking Back, Looking Forward. Proceedings of the Tenth International Conference on Teaching Statistics (ICOTS-10), Kyoto, Japan. Voorburg, The Netherlands: International Statistical Institute. Jeannotte, D. (2015). Mathematical reasoning: a conceptual model for learning and teaching at the primary and secondary levels of schooling. (Unpublished doctoral dissertation). Université du Québec à Montréal. Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1–12. https://doi.org/10.1007/s10649-017-9761-8 Kollosche, D. (2021). Styles of reasoning for mathematics education. Educational Studies in Mathematics, 107(3), 471–486. https://doi.org/10.1007/s10649-021-10046-z Konold, C., Higgins, T., Russell, S.J., & Khalil, K. (2015). Data seen through different lenses. Educational Studies in Mathematics, 88(3), 305–325. https://doi.org/10.1007/s10649-013-9529-8 Langrall, C., Nisbet, S., Mooney, E., & Jansem, S. (2011). The role of context expertise when comparing groups. Mathematical Thinking and Learning, 13(1–2), 47–67. https://doi.org//10.1080/10986065.2011.538620 Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82–105. Makar, K., & Rubin, A. (2018). Learning about statistical inference. In D. Ben-Zvi, K. Makar, & J. Garfield (Eds.), International handbook of research in statistics education (pp. 261–294). Switzerland: Springer. https://doi.org/10.1007/978-3-319-66195-7_8 Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical inference. Mathematical Thinking and Learning, 13(1), 152–173. https://doi.org/10.1080/10986065.2011.538301 Pedemonte, B., &t Reid, D. A. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76(3), 281–303. Peirce, C. S. (n.d.). The collected papers of Charles Sanders Peirce (Electronic ed.). Charlottesville: InteLex Past Master. Retrieved from http://library.nlx.com/xtf/view?docId=peirce/peirce.00.xml;chunk.id=div.peirce.pmpreface.1;toc.depth=1;toc. id=div.peirce.pmpreface.1;brand=default&fragment_id=. Pfannkuch, M. (2006, July 2–7). Informal inferential reasoning. In A. Rossman & B. Chance (Eds.), Proceedings of the 7th International Conference on Teaching of Statistics (CD-ROM), Salvador, Bahia, Brazil. Pfannkuch, M., Wild, C., & Parsonage, R. (2012). A conceptual pathway to confidence intervals. ZDM, 44(7), 899– 911. https://doi.org/10.1007/s11858-012-0446-6 Rossman, A. (2008). Reasoning about Informal Statistical Inference: One Statistician's View. Statistics Education Research Journal, 7(2). 5–19. Shaughnessy, J. M. (2019). Recommendations about the Big Ideas in Statistics Education: A Retrospective from Curriculum and Research. Cuadernos de Investigación y Formación en Educación Matemática, 18, 44–58. Zieffler, A., Garfield, J., delMas, R., & Reading, C. (2008). A framework to support research on informal inferential reasoning. Statistics Education Research Journal, 7(2), 40–58.