Shaping a scientific self: a circulating truth within social discourse
Tipo de documento
Autores
Lista de autores
Andrade-Molina, Melissa y Valero, Paola.
Resumen
In this paper we illustrate how a truth circulates within social discourse. We examine a particular truth reproduced within science, that is: through the understanding of Euclid’s axioms and postulates a person will gain the access to all human knowledge. We deploy a discourse analysis that helps us to understand how a truth is reproduced and circulated among diverse fields of human knowledge. Also we show why we accept and reproduce a particular discourse. Finally, we state Euclidean geometry as a truth that circulates in scientific discourse. We unfold the importance of having students follow the path of what schools perceive a real scientist is, not to become a scientist, but rather to become a logical thinker, a problem-solver, and a productive citizen who uses reason.
Fecha
2015
Tipo de fecha
Estado publicación
Términos clave
Análisis del discurso | Comprensión | Reflexión sobre la enseñanza | Teoremas | Teoría social del aprendizaje
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Título libro actas
Proceedings of the eighth international mathematics education and society conference (volumen 2)
Editores (actas)
Lista de editores (actas)
Greer, Brian y Mukhopadhyay, Swapna
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
284 - 297
Referencias
Bang, L. (2014). Welcome to school—the empire-building business— an affirmation of Bourdieu’s concept of field. Waikato Journal of Education, 19(1), 51-62. Brodkey, J. J. (1996). Starting a Euclid club. The Mathematics Teacher, 89(5), 386-388. Burgin, V. (1987). Geometry and abjection. AA Files, 35-41. Daston, L., & Galison, P. (2007). Objectivity. Brooklyn, NY: Zone Books. Deleuze, G. (1988). Foucault. Minneapolis, MN: University of Minnesota Press. Deleuze, G., & Guattari, F. (1987). A thousand plateaus: Capitalism and schizophrenia. Minneapolis, MN: University of Minnesota Press. Foucault, M. (1982). The subject and power. Critical inquiry, 8(4), 777-795. Frank, W. A. (2007). Hyacinth Gerdil’s “Anti-Emile”: A prophetic moment in the philosophy of education. The Review of Metaphysics, 61(2), 237-261. Grant, H. (1990). Geometry and politics: Mathematics in the thought of Thomas Hobbes. Mathematics Magazine, 63(3), 147-154. doi: 10.2307/2691132 Griffiths, R., & Griffiths, G. E. (1765). The Monthly Review or Literary Journal, 32. London: R. Griffiths. Guarini, G. (1968). Architettura civile, introduzione di N. Carboneri, note e appendice a cura di B. Tavassi La Greca, Milano. Harrison, E. W. (1919). Certain undefined elements and tacit assumptions in the first book of Euclid’s Elements. The Mathematics Teacher, 12(2), 41-60. doi: 10.2307/27950238 Hartshorne, R. (2000). Geometry: Euclid and beyond. New York, NY: Springer. Hirsch, R. (1996). Is mathematics a pure science? Science & Society, 60(1), 58-79. Jørgensen, M. W., & Phillips, L. J. (2002). Discourse analysis as theory and method. London: Sage Publications. Majsova, N. (2014). Outer space and cyberspace: An outline of where and how to think of outer space in video games. Teorija in Praksa, 51(1), 106-122. McClelland, J. S. (2005). A history of western political thought. New York, NY: Routledge. Ministry of Education of Chile (2010). Mapas de Progreso del Aprendizaje. Geometría. Santiago: Author. Organization for Economic Co-operation and Development (2014). PISA 2012 Results: What Students Know and Can Do – Student Performance in Mathematics, Reading and Science (Volume I, Revised edition, February 2014). OECD Publishing. http://dx.doi. org/10.1787/9789264201118-en. Popkewitz, T. S. (2008). Cosmopolitanism and the age of school reform: science, education, and making society by making the child. New York, NY: Routledge. Popper, K. (2005). The Logic of Scientific Discovery. London: Taylor & Francis. Rabinowitz, P. J., & Bancroft, C. (2014). Euclid at the core: Recentering literary education. Style, 48(1), 1-34. Ray, C. (1991). Time, Space and Philosophy. London: Routledge. Sbacchi, M. (2001). Euclidism and Theory of Architecture. Nexus Network Journal, 3(2), 25-38. doi: http://dx.doi.org/10.1007/ s00004-001-0021-x Suppes, P. (1977). Is visual space Euclidean? Synthese, 35(4), 397-421. Sweeney, J. H. (2014). Einstein’s dreams. The Review of Metaphysics, 67(4), 811-834. Toulmin, S. (1998). The idol of stability (Tanner Lectures on Human Values). Retrieved 31 Ocotber, 2014, from http://tannerlectures. utah.edu/_documents/a-to-z/t/Toulmin99.pdf Valero, P. (2013). Mathematics for all and the promise of a bright future. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eight Congress of the European Society for Research in Mathematics Education. Middle East Technical University, Ankara, Turkey: European Society for Research in Mathematics Education. Vinnicombe, T. (2005). Thomas Hobbes and the displacement of political philosophy. International Journal of Social Economicsw 32(8), 667-681.