Teacher’s semiotic games in mathematics laboratory
Tipo de documento
Autores
Lista de autores
Robutti, Ornella
Resumen
The paper uses a semiotic lens to describe the teacher’s interventions in classroom discussions, with all the students or only o group of them. The frame is semiotic-cultural and considers teacher’s production within students’ productions, during the development of a mathematical activity. This frame uses the model of the semiotic bundle to describe the various semiotic contributions (by the teacher and the students) and allows focussing some important strategies, called semiotic games, used by the teacher to support students’ mathematics learning.
Fecha
2009
Tipo de fecha
Estado publicación
Términos clave
Desarrollo del profesor | Gestión de aula | Otro (gestión) | Práctica del profesor | Semiótica
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
1
Número
1
Rango páginas (artículo)
1-25
ISSN
21765634
Referencias
Anichini, G., Arzarello, F., Ciarrapico, L., & Robutti, O. (Eds.). (2004). New mathematical standards for the school from 5 through 18 years. Copenhagen: UMI-CIIM. Antinucci, F. (2001). La scuola si è rotta. Bari, Italy: Laterza. Arzarello, F. (2006). Semiosis as a multimodal process, Relime, Numero Especial, 267-299. Arzarello, F., & Paola D. (2007). Semiotic games: The role of the teacher. In J. Woo, H. Lew, K. Park, & D. Seo (Eds.), Proceedings of the 31th Conference of the International Group for the Psychology of Mathematics Education, 2, 17–24. Seoul, Korea: The Korean Society of Educational Studies in Mathematics. Arzarello F, Robutti O., Bazzini L. (2005). Acting is learning: focus on the construction of mathematical concepts. Cambridge Journal of Education. Special Issue, Vol. 35, n.1, 55-67. Arzarello, F., Paola, D., Robutti, O. & Sabena, C. (2008). Gestures as semiotic resources in the mathematics classroom. Educational Studies in Mathematics. Special Issue http://dx.doi.org/10.1007/s10649-008-9163-z Arzarello, F. & Robutti, O. (2008). Framing the embodied mind approach within a multimodal paradigm. In: Lyn English, M. Bartolini Bussi, G. Jones, R. Lesh e D. Tirosh (Eds.), Handbook of International Research in Mathematics Education (LEA, USA), 2nd revised edition, 716-745. Arzarello F., Robutti O. (2003). Approaching algebra through motion experiences. In: Perceptuo-motor Activity and Imagination in Mathematics Learning, Research Forum 1, In N. A. Pateman, B. J. Dougherty, & J. T . Zilliox (Eds.), Proceedings of the 27th Conference. of the International Group for the Psychology of Mathematics Education, 1, pp. 111-115. Honolulu, Hawai’i: University of Hawai’i. Bartolini Bussi, M.G. (1998). Joint activity in mathematics classroom: A Vygoskian analysis. In F. Seeger, J. Voigt & U. Waschescio (Eds.), The culture of the mathematics classroom, 13-49. Cambridge: Cambridge University Press. Bartolini, M.G. & Mariotti, M.A. (2008). Semiotic mediation in the mathematics classroom. In: Lyn English, M. Bartolini Bussi, G. Jones, R. Lesh e D. Tirosh (Eds.), Handbook of International Research in Mathematics Education (LEA, USA), 2nd revised edition, 746-783. Bauersfeld, H., Krummheuer, G. & Voigt, J. (1988). Interactional theory of learning and teaching mathematics and related microethnographical studies. In H. G. Steiner & A. Vermandel (Eds.), Foundations and methodology of the discipline mathematics education, 174-188. Bielefled-Antwerp. Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Dordrecht: Kluwer Academic Publishers. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics, Educational Studies in Mathematics, (61), 103-131. Gallese, V. & Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 21, 1-25. Kress, G. (2004). Reading images: Multimodality, representation and new media, Information Design Journal, 12(2), 110-119. Lakoff, G., & Nùñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books. Malara, N. & Zan, R. (2008). The complex interplay between theory in mathematics education and teachers’ practice. Reflections and examples. In: Lyn English, M. Bartolini Bussi, G. Jones, R. Lesh e D. Tirosh (Eds.), Handbook of International Research in Mathematics Education (LEA, USA), 2nd revised edition, 535-560. McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: Chicago University Press. Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding mathematics. In N. A. Pateman, B. J. Dougherty, & J. T . Zilliox (Eds.), Proceedings of the 27th Conference. of the International Group for the Psychology of Mathematics Education, 1, 103–135. Honolulu, Hawai’i: University of Hawai’i. Radford, L. (2006). The Anthropology of Meaning, Educational Studies in Mathematics, 61, 39-65. Robutti O. (2003). Real and virtual calculator: from measurement to definite integral. In: Proceedings of CERME 3. http://www.dm.unipi.it/~didattica/CERME3/proceedings/Groups/TG9/TG9_Robutti_cerme3.pdf. Robutti O., Arzarello F. & Bartolini Bussi, M.G, (2004). Infinity as a multi-faceted concept in history and in the mathematics classroom. In: M. J. Hoines & A. B. Fuglestat (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, vol. 4, 89-96. Robutti O. (2006). Motion, Technology, Gesture in Interpreting Graphs. The International Journal for Technology in Mathematics Education. vol. 13 n.3, 117-126. Schoenfeld, A.H. (1998). Toward a theory of teaching in context. Issues in Education, 4(1), 1-94. Schoenfeld, A.H. (1999). Models of the teaching process. Journal of Mathematical Behavior, 18(3), 243-261. Sinclair, N., & Schiralli, M. (2003). A constructive response to ‘Where mathematics comes from.’ Educational Studies in Mathematics, 52(1), 79–91. Sriraman, B. & English, L. (2005). Theories of mathematics education: a global survey of theoretical frameworks/trends in mathematics education research. Zentralblatt für Didaktik der Mathematik, 37(6), 450-456. Tall, D. (1989). Concept Images, Generic Organizers, Computers & Curriculum Change, For the Learning of Mathematics, 9 (3) 37-42 Vygotsky, L. S. (1978). Mind in society, Cambridge, MA: Harvard University Press. Williams, J. (2008). Embodied multi-modal communication from the perspective of activity theory, Educational Studies in Mathematics. Special Issue http://dx.doi.org/10.1007/s10649-008-9164-y