The interdisciplinarity of ethnomathematics: challenges of ethnomathematics to mathematics and its education
Tipo de documento
Autores
Lista de autores
Rohrer, Andrea y Schubring, Gert
Resumen
Since the creation of the International Study Group on Ethnomathematics, several researchers have debated on how could or should a theory of ethnomathematics exist, and, if so, how it is to be conceptualized. So far, there exists no consensus on how this theory should be defined. During the last International Conference on Ethnomathematics (ICEm-4) in Towson, Maryland (July, 2010), Rik Pinxten emphasized on the necessity of reopening this debate. Ethnomathematics will only be acknowledged by other scientific communities if we, as ethnomathematicians, are able to establish a proper conceptualization of this field of study. This article aims to at least one possible approach to a conceptualization of a theory of ethnomathematics. As we will show, this theory needs to be regarded as an interdisciplinary discipline that covers theories from both the exact and social sciences.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Idioma
Revisado por pares
Formato del archivo
Revista
Revista Latinoamericana de Etnomatemática: Perspectivas Socioculturales de la Educación Matemática
Volumen
6
Número
3
Rango páginas (artículo)
78-87
ISSN
20115474
Referencias
ISGEm-Newsletter (1985-2003). P. Scott (Ed.), International Study Group on Ethnomathematics. Newsletter. D’Ambrosio, U. (1985). Ethnomathematics and its Place in the History and Pedagogy of Mathematics. For the Learning of Mathematics, 5(1), 44-48. D’Ambrosio, U. (1989). A Research Program and a Course in the History of Mathematics: Ethnomathematics. Historia Mathematica, 16, 285-288. Domite, M. do C. S. (2002). Etnomatemática e sua Teoria: Teoria da Etnomatemática? Proceedings of the Second International Conference on Ethnomathematics. Ouro Preto, Brazil: CD-ROM. Falsirol, O. (1959). Per una Maggiore Attenzione all’Etnologia Matematica. Rivista di Antropologia, XLVI, 262-266. Gerdes, P. (1989). Hearing 5: What can we expect from Ethnomathematics. In C. Keitel, P. Damerow, A. Bishop and P. Gerdes (Eds.), Mathematics, Education and Society: Reports and Papers presented in the Fifth Day Special Programme on ‘Mathematics, Education and Society’ at the 6th International Congress on Mathematical Education, Budapest, 27 July - 3 August, 1988. UNESCO, Paris. Gerdes, P. (1997). Ethnomatematik dargestellt am Beispiel der Sona Geometrie. Heidelberg, Germany: Spektrum Akademischer Verlag. Gerdes, P. (2007). Etnomatemática: Reflexões sobre Matemática e Diversidade Cultural. Ribeirão, Portugal: Edições Húmus Lda. Heckhausen, H. (1972). Discipline and Interdisciplinarity. In L. Apostel (Ed.), Interdisciplinarity: problems of teaching and research in universities; this report is based on the results of a Seminar on Interdisciplinarity in Universities which was organised by CERI in collaboration with the French Ministry of Education at the University of Nice (France) September 7 th - 12th , 1970. Paris, France: Organisation for Economic Co-Operation and Development. Huutoniemi, K. & Klein, J. T. & Bruun, H.& Hukkinen, J. (2010) Analyzing Interdisciplinarity: Typology and indicators. Research Policy, 39, 79-88. Kuhn, T. S. (1962). La Estructura de las Revoluciones Científicas. 1st spanish (1971) edn. Santiago, Chile: Fondo de Cultura Económica Chile S. A. English title: The Structure of Scientific Revolutions. Masterman, M. (1970). The Nature of a Paradigm. In I. Lakatos & A. Musgrave (Eds.), Criticism and the Growth of Knowledge: Proc. of the Int. Colloquium in the Philosophy of Science, London 1965. (Vol. 4, pp. 59-89). Cambridge, UK: Cambridge University Press. Nersessian, N. J. (2003). Kuhn, Conceptual Change, and Cognitive Science. In T. Nickles (Ed.), Thomas Kuhn. Cambridge, UK: Cambridge University Press. Pais, A. (2011). Criticisms and contradictions of ethnomathematics. Educational Studies in Mathematics, 76, 209-230. Rohrer, A. V. (2010). Ethnomathematics: New Approaches to its Theory and Application. Universität Bielefeld, Germany: unpublished PhD thesis. Rohrer, A. V., & Schubring, G. (2011). Ethnomathematics in the 1930s – the contribution of Ewald Fettweis to the history of ethnomathematics. For the Learning of Mathematics, 31(2), 35-39. Schubring, G. (2011). Conceptions for relating the evolution of mathematical concepts to mathematics learning – epistemology, history, and semiotics interacting. Educactional Studies in Mathematics, 77, 79-104. Sebastiani Ferreira, E. (1991). Por uma Teoria da Etnomatemática. Bolema, 6(7), 30-35.