The Pósa method with ATD lenses: praxeological analysis on math problems in hungarian talent care education with ‘recursion’ in their logos blocks
Tipo de documento
Autores
Lista de autores
Katona, Dániel
Resumen
The praxeological analysis of selected questions used in the Hungarian Pósa method is presented, focusing on a common element in their logos blocks, called recursive thinking. As part of a broader research with reverse didactic engineering methodology, aiming at theorizing the ‘intuitively’ developed Pósa method, the present findings are also compared to previous results and re-interpret the concepts of kernel and web of problem thread. Based on these results gained by using tools of the Anthropological Theory of the Didactic, the paper offers a partial description of the didactic strategy of the Pósa method for inquiry-based learning mathematics and raises questions for further research.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Análisis didáctico | Didáctica francesa | Gestión de aula | Interpretativo | Reflexión sobre la enseñanza
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM, 45(6), 797‒810. Barquero, B., & Bosch, M. (2015). Didactic engineering as a research methodology: from fundamental situations to study and research paths. In A. Watson, & M. Ohtani (Eds.), Task Design in Mathematics Education (pp. 249–273). Cham, Switzerland: Springer. Bosch, M., Chevallard, Y., García, F. J., & Monaghan, J. (2019). Working with the Anthropological Theory of the Didactic in Mathematics Education: A Comprehensive Casebook. London, UK: Taylor & Francis Ltd. Bosch, M., & Gascón, J. (2014). Introduction to the Anthropological Theory of the Didactic (ATD). In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 67–83). Dordrecht, The Netherlands: Springer. Bosch, M., & Winsløw, C. (2016). Linking problem solving and learning contents: The challenge of self-sustained study and research processes. Recherches en Didactique des Mathematiques, 35(3), 357‒401. Chevallard, Y. (1992). A theoretical approach to curricula. Journal für Mathematik-Didaktik 13(2‒3), 215‒230. Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In M. Bosch (Ed.), Proceedings of the IV Congress of the European Society for Research in Mathematics Education (pp. 21‒30). Barcelona: FUNDEMI-IQS. Chevallard, Y. (2015). Teaching mathematics in tomorrow’s society: a case for an oncoming counter-paradigm. In S. J. Cho (Ed.), Proceedings of the 12th International Congress on Mathematical Education (pp.173–187). Springer International Publishing. Katona, D., & Szűcs, G. (2017). Pósa-method & cubic geometry: a sample of a problem thread for discovery learning of mathematics. In T. J. Karlovitz (Ed.), Differences in pedagogical theory and practice (pp. 17‒34). Komarno, Slovakia: International Research Institute s.r.o. Győri, J. G., & Juhász, P. (2018). An extra curricular gifted support programme in Hungary for exceptional students in mathematics. In K. S. Taber, M. Sumida, & L. McClure (Eds.), Teaching gifted learners in STEM subjects: developing talent in science, technology, engineering and mathematics (pp. 89‒106). Abingdon, Oxon and New York, NY: Routledge.