Theory of didactical situations: theoretical rereading from the perspective of inclusive playful Mathematics education
Tipo de documento
Autores
Lista de autores
Silveira, Érica Santana
Resumen
This article explains a rereading of the theory of didactical situations (TDS) from the perspectives of playfulness and inclusive education of students with specific educational needs (SEN) in the teaching and learning processes of mathematics. To do so, a theoretical discussion on TDS, playfulness, and inclusive education was held to create a reflection on the possible articulations to be established among them. Notably, TDS was developed by Guy Brousseau (1986) and initially conceives the didactical situation around three poles: teacher, student, and knowledge. Additionally, the teacher and students are considered players who play with the content knowledge to be institutionalized. This aspect allows articulation between TDS and playfulness. In the context of didactical situations, there also exists real or fictional construction of a milieu, wherein the student acts autonomously to build knowledge. Considering this and the inclusion process, the teacher can organize a milieu, considering accessibility in education, to work with every student’s specificities, thus breaking the homogeneity present in educational spaces. Therefore, basing mathematics classes on a theory that makes up the universe of mathematics didactics and was not conceived as playfulness and inclusive perspective but that from the assumption of accessibility, can contribute to the inclusion of all students, regardless of the SEN they may present. The teacher will promote the development of autonomy and critical training of students, in addition to institutionalizing content knowledge and providing the status of knowledge.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
Comprensión | Contextos o situaciones | Necesidades educativas especiales | Otra (teorías) | Reflexión sobre la enseñanza
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Volumen
15
Número
2
Rango páginas (artículo)
107–115
ISSN
2176-5634
Referencias
Arendt, H. (2006). The crisis in Education. In: Arendt, H. Between Past and Future (pp. 170-193). New York: Penguin Classics. Bacelar, V. L. E. (2009). Ludicidade e Educação Infantil. Salvador: EDUFBA. Associação Brasileira de Normas Técnicas (2015). Accessibility to buildings, equipament and the urban environment. https:// www.academia.edu/61105598/Accessibility_to_buildings_ equipament_and_the_urban_environment. Brasil (2015). Lei Brasileira de Inclusão da Pessoa com Deficiência: Lei 13.146, 6 july 2015. Brasilia. http://www. planalto.gov.br/ccivil_03/_ato2015-2018/2015/lei/l13146. htm. Brotto, F.O. (1999). Jogos cooperativos: o jogo e o esporte como um exercício de convivência. Campinas: Campinas State University. Brousseau, G. (1980). L’échec et le contract. Recherches 41. (pp.177-182). https://hal.archives-ouvertes.fr/hal-00483149/ document. Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches em Didactique des Mathématiques. Brousseau, G. (1990). Le contrat didactique: le milieu. Recherches em Didactique des Mathematiques, (pp. 309-336). La Pensée Sauvage. https://hal.archives-ouvertes.fr/hal-00686012/file/ contrat_didactique_le_milieu.pdf. Brousseau, G. (1997). La théorie des situations didactiques. Montéal: Université de Montréal. www.cfem.asso.fr/ actualites/archives/Brousseau.pdf. Brousseau, G. (1998). Théorie des situations didactiques: didactique des mathématiques 1970-1990. França: La Pensée Sauvage. Brousseau, G. (2002). Theory of didactical dituations in mathematics: didactique des mathématiques, 1970-1990. Translated by Nicolas Balacheff; Martin Cooper; Rosamund Sutherland; Virginia Warfiel. New York: Kluwer Academic Publishers. Brousseau, G. (2008). Introdução ao estudo das situações didáticas: conteúdos e métodos de ensino. Translated by Camila Bogéa. São Paulo: Ática. Burgstahler, S. (2009). Universal design in education: principles and applications. Seattle: University of Washington. www. washington.edu/doit/sites/default/files/atoms/files/Universal Design-Education-Principles-Applications.pdf. Camargo, E.P. (2017). Inclusão social, educação inclusiva e educação especial: enlaces e desenlaces. Science and Education 23 (1), 1-6. doi: https://doi.org/10.1590/1516- 731320170010001. Freitas, J. L. M. (2012). Teoria das Situações Didáticas. In: S.D.A. Machado. Educação Matemática: uma (nova) introdução. pp. 77-111). São Paulo: Educ. Huizinga, J. (2017). Homo Ludens: o jogo como elemento da cultura. São Paulo: Perspectiva. Luckesi, C. (2014). Ludicidade e formação do educador. Entreideias Magazine 3(2),13-23. Macedo, L.,& Petty, A. L. S. & Passos, N. C. (2005). Os jogos: o lúdico na aprendizagem escolar. Porto Alegre: Artmed. Mantoan, M. T. E. (2008). O desafio das diferenças nas escolas. Petrópolis: Vozes. Mantoan, M.T.E. (2015). Inclusão escolar: O que é? Por quê? Como fazer? São Paulo: Summus. Nery, E.S.S. (2021). A Teoria das Situações Didáticas e a inclusão de estudantes com deficiência visual nos processos de ensino e aprendizagem do conceito de função mediados por um recurso lúdico (Tese, Universidade de Brasília). Santos, B. S. (2006). Para uma concepção intercultural dos direitos humanos. In: B.S. Santos, A gramática do tempo: para uma nova cultura política (pp. 433-470). São Paulo: Cortez. Slee, R. (2009). The Inclusion Paradox: The Cultural Politics of Difference. In: M.W. Apple, W. Au, L.A. Gandin. The Routledge International Handbook of Critical Education (pp. 177-189). New York: Routledge. UNESCO. (1994). The Salamanca Statement and framework for action on special needs education. World Conference on Special Needs Education: Access and Quality. Salamanca: UNESCO. Valente, W. R. (2012). Por uma história comparativa da Educação Matemática. Research Books 162-179).
Proyectos
Cantidad de páginas
8