Use of open source mathematics textbooks in university courses
Tipo de documento
Autores
Lista de autores
Mesa, Vilma María
Resumen
In the Undergraduate Teaching and Learning in Mathematics with Open Software and Text Books at the university level (Beezer et al., 2018). The project gathers (a) real-time, individualized viewing data from three dynamic university textbooks for calculus, linear algebra, and abstract algebra; (b) ongoing surveys of users’ descriptions of the textbook use; (c) users’ questionnaires (beliefs and attitudes towards mathematics, technology, teaching, and learning); and (d) student performance (tests of knowledge and grades). The textbooks have been enhanced with a variety of features (WeBWorK, Geogebra, Interactive Reading Questions, and computational cells). In this article I highlight the theoretical and methodological approaches used in the project to answer two questions: How do students and instructors use textbooks? and How can we develop textbooks that will improve teaching and learning?
Fecha
2019
Tipo de fecha
Estado publicación
Términos clave
Álgebra | Inicial | Libros de texto | Software | Visualización
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Beezer, R. (2017). First course in linear algebra. Gig Harbour, WA: Congruent Press. Available at http://linear. pugetsound.edu/. HTML available at http://linear.ups.edu/html/fcla.html. Beezer, R., Judson, T., Farmer, D., Morrison, K., Mesa, V., & Lynds, S. (2018). Undergraduate Teaching and learning in Mathematics with Open Software and Textbooks (UTMOST): National Science Foundation (DUE 1821706,1821329,1821114,1821509). Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. Boelkins, M. (2018). Active Calculus. Available at https://activecalculus.org/single/: CreateSpace Independent Publishing Platform. Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational Evaluation and Policy Analysis, 25, 119-142. Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71, 199-218. Judson, T. (2017). Abstract algebra: Theory and applications. Available at http://abstract.pugetsound.edu/. HTML available at http://abstract.ups.edu/aata/. Orthogonal Publishing L3C. Rezat, S., & Strässer, R. (2012). From the didactical triangle to the socio-didactical tetrahedron: Artifacts as fundamental constituents of the didactical situation. ZDM Mathematics Education, 44, 641-651. doi:10.1007/s11858-012-0448-4 Weinberg, A., Wiesner, E., Benesh, B., & Boester, T. (2012). Undergraduate students’ self-reported use of mathematics textbooks. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 22(2), 152-175. doi:10.1080/10511970.2010.509336