Uso de las conexiones entre representaciones por parte del profesor en la construcción del lenguaje algebraico
Tipo de documento
Autores
Lista de autores
de-la-Fuente, Abraham y Deulofeu, Jordi
Resumen
La representación es un elemento muy importante en la enseñanza y el aprendizaje de las matemáticas escolares. Además, algunas representaciones ayudan a resolver problemas concretos mejor que otras representaciones, así que saber hacer traducciones entre diversas representaciones es, también, crucial en el aprendizaje de las matemáticas. En este artículo, vemos cómo los profesores hacen conexiones entre representaciones para ayudar a los alumnos a construir el lenguaje algebraico. Para ello, analizamos tres episodios extraídos de dos clases de un profesor. Las intervenciones del profesor se producen en el marco de una clase que desarrolla en un ambiente de resolución de problemas. Realizamos este análisis utilizando el marco teórico que nos proporciona el Knowledge Quartet , un instrumento que nos permite observar cómo el conocimiento del profesor emerge cuándo ayuda a sus alumnos a aprender matemáticas. Este instrumento consiste en una serie de indicadores que nos ayudan a ver situaciones en que el profesor utiliza su conocimiento mientras interacciona con los alumnos. Estos indicadores están clasificados en cuatro dimensiones: fundamentos, transformación, conexiones y contingencia. En este artículo se completa el marco teórico dado por el Knowledge Quartet con un nuevo indicador, que llamamos conexiones entre representaciones y que esta incluido en la dimensión de conexiones de este instrumento.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
Álgebra | Conocimiento | Práctica del profesor | Representaciones | Resolución de problemas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
36
Número
72
Rango páginas (artículo)
389-410
ISSN
19804415
Referencias
ARCAVI, A. The role of visual representation in the learning of mathematics. Educational Studies in Mathematics, Berlin, v. 52, p. 215-241, abr. 2003. BORKO, H.; MAYFIELD, V. The roles of the cooperating teacher and university supervisor in learning to teach. Teaching and teacher education, Amsterdam, v.11, p. 501-518, 1995. BUSINSKAS, A. Conversations about connections: how secondary mathematics teachers conceptualize and contend with mathematical connections. 2008. 183f. Thesis (Doctor of Philosofy) – Faculty of Education, Simon Fraser University, Burnaby, 2008. CAVIEDES, S.; DE GAMBOA, G.; BADILLO, E. Conexiones matemáticas que establecen maestros en formación al resolver tareas de medida y comparación de áreas. Praxis, Rioja, v. 15, n. 1, p. 69-87, 2019. CAMPO-MENESES, K.; FONT, V.; GARCÍA-GARCÍA, J.; SÁNCHEZ, A. Mathematical Connections Activated in High School Students’ Practice Solving Tasks on the Exponential and Logarithmic Functions. EURASIA Journal of Mathematics, Science and Technology Education, London, v. 17, n. 9, p. 1-14, 2021. DE GAMBOA, G.; BADILLO, E. R.; RIBEIRO, C. M. El horizonte matemático en el conocimiento para la enseñanza del profesor. Geometría y medida en educación primaria. PNA, Granada, v. 10, n. 1, p. 1-24, 2015. DE GAMBOA, G.; BADILLO, E.; RIBEIRO, M.; MONTES, M.; SÁNCHEZ-MATAMOROS, G. The Role of Teachers’ Knowledge in the Use of Learning Opportunities Triggered by Mathematical Connections. En: ZEHETMEIER, S.; POTARI, D.; RIBEIRO, M. (ed.). Professional Development and Knowledge of Mathematics Teachers. London: Routledge, 2020. p. 24-43. DE LA FUENTE, A. Construcción del lenguaje algebraico en un entorno de resolución de problemas: El rol del conocimiento del profesor. 2016. 371 f. Tesis (Doctorado en Didáctica de las Matemáticas) - Departament de Didàctica de les Matemàtiques i les Ciències Experimentals, Universitat Autònoma de Barcelona, Bellaterra, set. 2016. DE LA FUENTE, A.; DEULOFEU, J. Translation between language representation in problem solving as a tool to construct algebraic language. Comunicación 13 ICME, Hamburg, 2016. DE LA FUENTE, A.; DEULOFEU, J.; ROWLAND, T. Conectar lenguajes y problemas para resolver sistemas de ecuaciones. UNO, Barcelona, v. 74, p. 68-73, 2016. DE LA FUENTE, A.; ROWLAND, T.; DEULOFEU, J. Developing algebraic language inn a problem solving environment: the role of teacher knowledge. En: Proceedings of British Society for Research into Learning Mathematics Conference, 2016, Manchester: Adams G., feb. 2016, p. 25-30. DOLORES-FLORES, C.; GARCÍA-GARCÍA, J. Conexiones intramatemáticas y extramatemáticas que se producen al resolver problemas de cálculo en contexto: un estudio de casos en el nivel superior. Bolema, Rio Claro, v. 31, p. 158-180, abr. 2017. DUFOUR-JANVIER, B. BEDNARZ, N.; BELANGER, M. Pedagogical considerations concerning the problem of representation. En: JANVIER, C. (ed.). Problems of representation in the teaching and learning of mathematics. Hillsdale: Lawrence Erlbaum Associates, 1987. p. 227-232. DUVAL, R. Mathematical activity and the transformations of semiotic representations. En: TANIA, M.; CAMPOS, M. (ed.). Understanding the mathematical way of thinking: the registers of semiotic representations. Berlin: Springer, 2006 p. 21-43. EISENHARDT, K. Building theories from case study re-search. Academy of Management Review, New York, v. 14, p. 532-550, 1989. ELI, J.; MOHR-SCHROEDER, M.; LEE, C. Mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematic Education Research Journal, Australia, v. 23, n. 3, p. 297-319, 2011. GARCÍA-GARCÍA, J.; DOLORES-FLORES F. Exploring pre-university students mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, London, v. 52, n. 6, p. 912-936, feb. 2020. GOLDIN, G. A. Representation in school mathematics: A unifying research perspectives. En: KILPATRICK, J.; MARTIN, W. G.; SCHIFTER, D. (ed.). A Research Companion to Principles and Standards for School Mathematics. Reston: National Council of Teachers of Mathematics, 2003. p. 275-285. GOLDIN, G. A.; SHTEINGOLD, N. Systems of representations and the development of mathematical concepts. En: CUOCO, A.; CURCIO, F. (ed.). Roles of representations in school mathematics. Reston: National Council of Teachers of Mathematics, 2001. p.1-23. GLASER, B. G.; STRAUSS, A. L. The discovery of grounded theory: strategies for qualitative research. New York: Aldine Gruyter, 1967. GREENO, J. G.; HALL, R. P. Representation: Learning with and about representation forms. The Phi Delta Kappa, Bloomington, v. 78, p. 361-367, jan. 1997. HEGARTY, S. Teaching as a knowledge-based activity. Oxford Review of Education, Oxford, v. 26, n. 3-4, p. 451-465, 2000. JANVIER, C. Problems of representation in the teaching and learning of mathematics. Washington DC: Lawrence Erlbaum, 1987. KAPUT, J. Representation system and mathematics. En: JANVIER, C. (ed.). Problems of representation in the teaching and learning of mathematics. Hillsdale: Lawrence Erlbaum Associates, 1987. p. 19-26. KAPUT, J. Teaching and learning a new algebra with understanding. Dartmouth: National Center for Improving Student Learning and Achievement in Mathematics and Science, 2000. MA, L. Knowing and teaching elementary mathematics: teachers’ understanding of fundamental mathematics in China and the United States. Washington DC: Lawence Erlbaum, 1999. MAINALI, B. Representation in Teaching and Learning Mathematics. International Journal of Education in Mathematics, Science and Technology, Estambul, v. 9, n. 1, p. 1-21, 2021. MASON, J.; SPENCE, M. Beyond mere knowledge of mathematics: the importance of knowing-to act in the moment. Educational Studies in Mathematics, Berlín, v. 38, p. 135-161, mar. 1999. MOON, K.; BRENNER, M. E.; JACOB, B.; OKAMOTO, Y. Prospective secondary mathematics teachers’ understanding and cognitive difficulties in making connections among representations. Mathematical Thinking and Learning, London, v. 15, n. 3, p. 201-227, 2013. RODRÍGUEZ-NIETO, C. A.; RODRÍGUEZ-VASQUEZ, F. M.; FONT, V. A new view about connections: the mathematical connections established by a teacher when teaching the derivative. International Journal of Education in Mathematics, Science and Technology, London, pendiente de publicación, Aceptado 2020. RODRÍGUEZ-NIETO, C.; RODRÍGUEZ-VÁSQUEZ, F. M.; FONT, V.; MORALES-CARBALLO, A. Una visión desde el networking TAC-EOS sobre el papel de las conexiones matemáticas en la comprensión de la derivada. Revemop, Ouro Preto, v. 3, p. 1-32, 2021a. RODRÍGUEZ-NIETO, C. A.; FONT, V.; BORJI, V.; RODRÍGUEZ-VASQUEZ, F. M.; FONT, V. Mathematical connections from a networking of theories between extended theory of mathematical connnections and onto-semiotic approach. International Journal of Educatio in Mathematics, Science and Technology, London, Pendiente de publicación, Fecha de aceptación: 2021b RODRÍGUEZ-NIETO, C.; RODRÍGUEZ-VÁSQUEZ, F. M.; GARCÍA-GARCÍA, J. Exploring University Mexican Students’ Quality of Intra-Mathematical Connections When Solving Tasks About Derivative Concept. EURASIA Journal of Mathematics, Science and Technology Education, London, v. 17, n. 9, p. 1-21, 2021. ROWLAND, T. The Knowledge Quartet: the genesis and application of a framework for analysing mathematics teaching and deepening teacher’s mathematics knowledge. SISYPHUS Journal of Education, Lisboa, v. I, n. 3, p. 15-43, abr. 2014. ROWLAND, T. Researching Mathematical Knowledge in Teaching. En: LLINARES, S.; CHAPMAN, O. (ed.). International Handbook of Mathematics Teacher Education: Knowledge, Beliefs, and Identity in Mathematics Teaching and Teaching Development. Leiden: Brill, 2020. p. 105-128. ROWLAND, T.; TURNER, F.; THWAITES, A.; HUCKSTEP, P. Developing primary mathematics teaching. Singapore: SAGE Publications Ltd., 2009. SCHOENFELD, A. H. Episodes and executive decisions in mathematical problem solving. En: ANNUAL MEETING OF THE AMERICAN EDUCATIONAL RESEARCH ASSOCIATION, 49, 1981, Los Ángeles. Proceedings [...] Los Ángeles: ERIC Documentation Reproduction Service No. ED201505, 1981. p. 1-73. SCHOENFELD, A. H. Reframing teacher knowledge: a research and development agenda. ZDM Mathematics Education, Karlsruhe, v. 52, p. 359–376, may. 2020. SHULMAN, L. E. Those who Understand: Knowledge Growth in Teaching. Educational Researcher, Washington, v. 15, n. 2, p. 4-14, feb. 1986 STRONG, M.; BARON, W. An analysis of mentoring conversations with beginning teachers: suggestions and responses. Teaching and teacher education, Amsterdam, v. 20, p. 47-57, 2004. VERGNAUD, G. Conclusions. En: JANVIER, C. (ed.). Problems of representation in the teaching and learning of mathematics. Hillsdale: Lawrence Erlbaum Associates, 1987. p. 227-232. WESTON, T. L.; KLEVE, B.; ROWLAND, T. Developing an online coding manual for Knowledge Quartet: An international project. Proceedings of. British Society for Research into Learning Mathematics, London, v. 32, n. 3, p. 179-184, 2013. ZHANG, J. The nature of external representations in problem solving. Cognitive Science, Nueva Jersey, v. 2, p. 179-217, Abril. 1997.