Comportamiento de estudiantes universitarios al usar definiciones matemáticas
Tipo de documento
Autores
Lista de autores
Aguirre, Valeria
Resumen
Frecuentemente estudiantes universitarios encuentran dificultades para utilizar apropiadamente las definiciones matemáticas, particularmente en la construcción de demostraciones. Algunos programas académicos requieren que los estudiantes desarrollen habilidades para construir demostraciones matemáticas que intrínsecamente requieren del uso correcto de definiciones. Poca investigación (e.g., Dahlberg & Housman, 1997; Edwards & Ward, 2004 ) ha indagado cómo los estudiantes universitarios se conducen al enfrentarse con definiciones matemáticas que desconocen. La pregunta de interés a la presente investigación es: ¿Cómo usan las definiciones los estudiantes universitarios, particularmente en la elaboración y evaluación de ejemplos, en la construcción de demostraciones y determinando la falsedad o veracidad de proposiciones? Los datos fueron recolectados a través de entrevistas semiestructuradas a 23 estudiantes inscritos en un curso de transición a la demostración. Se eligieron cinco definiciones: función, continuidad, ideal, grupo e isomorfismo. Cada estudiante fue entrevistado sobre una definición. Observaciones y resultados preliminares son presentados a continuación
Fecha
2015
Tipo de fecha
Estado publicación
Términos clave
Actitud | Competencias | Dificultades | Historia de la Educación Matemática | Otro (tipos evaluación)
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Título libro actas
Editores (actas)
Lista de editores (actas)
Conferencia Interamericana de educación Matemática
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
1-7
Referencias
Alcock, L. (2010). Mathematicians’ perspectives on the teaching and learning of proof. Research in collegiate mathematics education VII, 63-91. Alcock, L., & Simpson, A. (2002a). Definitions: Dealing with categories mathematically. For the Learning of Mathematics, 22(2), 28-34. Alcock, L. J., & Simpson, A. P. (2002b). Two components in learning to reason using definitions. In Proceedings of the 2nd International Conference on the Teaching of Mathematics (at the Undergraduate Level). Bills, L., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in mathematics education. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, 1, 126-154. Bills, L., & Tall, D. (1998). Operable definitions in advanced mathematics: The case of the least upper bound. In A. Olivier and K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psycology of Mathematics Education (Vol. 2, pp. 104-111). Stellenbosch, South Africa: University of Stellenbosch. Dahlberg, R. P., & Housman, D. L. (1997). Facilitating learning events through example generation. Educational Studies in Mathematics, 33(3), 283-299. Edwards, B. S., & Ward, M. B. (2004). Surprises from mathematics education research: Student (mis) use of mathematical definitions. The American Mathematical Monthly, 111(5), 411-424. Fernández, E. (2004). The students’ take on the epsilon-delta definition of a limit. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 14(1), 43-54. Comportamiento de estudiantes universitarios al usar definiciones matemáticas Comunicación XIV CIAEM-IACME, Chiapas, México, 2015. 7 Furina, G. (1994). Personal reconstruction of concept definitions: Limits. Challenges in mathematics education: constraints on construction: Proceedings of the 17th Annual Conference of the Mathematics Education Research Group of Australasia held at Southern Cross University. Housman, D., & Porter, M. (2003). Proof schemes and learning strategies of above-average mathematics students. Educational Studies in Mathematics, 53(2), 139-158. Parameswaran, R. (2010). Expert mathematicians’ approach to understanding definitions. The Mathematics Educator, 20(1), 43-51. Reimann P., & Schult, T. (1996). Turning examples into cases: Acquiring knowledge structures for analogical problem-solving. Educational Psychologist, 31(2), 123-140. Roh, K. H. (2008). Students’ images and their understanding of definitions of the limit of a sequence. Educational Studies in Mathematics, 69(3), 217-233. Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29, 123-151. Selden, J., & Selden, A., (2008) Consciousness in enacting procedural knowledge. In Proceedings of the Conference on Research in Undergraduate Mathematics Education (2008). Available at http://cresmet.asu.edu/crume2008/Proceedings/Proceedings.html. Selden, J., & Selden, A. (2009a). Teaching proving by coordinating aspects of proofs with students’ abilities. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 339-354). New York and London: Routledge /Taylor & Francis. Selden, J., & Selden, A. (2009b). Understanding the proof construction process. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. de Villiers (Eds.), Proceedings of the ICMI 19 Study Conference: Proof and Proving in Mathematics Education (Vol. 2, pp. 196- 201). Taipei, Taiwan: Department of Mathematics, National Taiwan Normal University. Tall, D., & Vinner, S. (1981). Concept image and concept definition with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. Tall, D. O. (1980). Mathematical intuition with special reference to limiting processes. Paper presented at the meeting of the Fourth International Conference for the Psychology of Mathematical Education, Berkeley, CA. Watson, A., & Mason, J. (2002). Student-generated examples in the learning of mathematics. Canadian Journal of Science, Mathematics and Technology Education, 2(2), 237-249. Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: Learners generating examples. Mahwah, NJ, USA: Erlbaum. Wilhelmi, M., Godino, J., & Lacasta, E. (2007). Didactic effectiveness of mathematical definitions: The case of the absolute value. International Electronic Journal of Mathematics Education, 2(2), 72-90. Zaslavsky, O., & Shir, K. (2005). Students' conceptions of a mathematical definition. Journal for Research in Mathematics Education, 36(4), 317-346. Zazkis, R., & Leikin, R. (2007). Generating examples: From pedagogical tool to a research tool. For the Learning of Mathematics, 27(2), 15. Zazkis, R., & Leikin, R. (2008). Exemplifying definitions: A case of a square. Educational Studies in Mathematics, 69(2), 131-148.
Cantidad de páginas
7