Ecuaciones desde una perspectiva histórica: un inventario de fuentes bibliográficas para ser empleado por profesores de matemáticas
Tipo de documento
Autores
Lista de autores
Castiblanco, Yara Zuleny
Resumen
Este documento describe los aspectos metodológicos considerados para la elaboración de un inventario de documentos relacionadas con propuestas y experiencias en torno al uso de una perspectiva histórica en la Enseñanza y Aprendizaje de las ecuaciones, que será puesto al servicio de docentes de Matemáticas que tengan interés por profundizar en el estudio de las ecuaciones y/o mejorar su práctica profesional. Inicialmente se describe en qué consiste el inventario de fuentes bibliográficas de documentos que versan sobre ecuaciones, luego se describen los momentos y etapas del proceso de selección, y por último, se realiza un análisis y reflexión de los resultados obtenidos.
Fecha
2014
Tipo de fecha
Estado publicación
Términos clave
Ecuaciones e inecuaciones | Evolución histórica de conceptos | Libros de texto | Meta-análisis | Reflexión sobre la enseñanza
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Tipo de tesis
Institución (tesis)
Departamento
Referencias
Baumgart, J. (1971). The History of Algebra.In Historical Topics for the Mathematics Classroom (pp. 233–263). Washington DC: National Council of Teachers of Mathematics. Baumgart, J. K. (1994). Tópicos de História da Matemática para uso em sala de aula. Álgebra (H. H. Domingues, Trans. Vol. 4). Sao Paulo: Atual Editora Ltda. Berlinghoff, W. P., & Gouvêa, F. Q. (2004). Math through the Ages. A Gentle History for Teacher and Others (Expanded Edition ed.). Washington & Farmington: Oxton House Piblishers & The Mathematical Association of America. Berlinghoff, W., & Gouvea, F. (2004). A Square and Things Quadratic Equations. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 127–132). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978. Berlinghoff, W., & Gouvea, F. (2004). Algebra Comes of Age. In Math through the Ages: A Gentle History for Teachers and Others(Expanded E., pp. 37–42). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978. Berlinghoff, W., &Gouvea, F. (2004). Arabic Mathematics. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 28–32). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978. Berlinghoff, W., & Gouvea, F. (2004). Intrigue in Rnaissance Italy Solving Cubic Equations. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 127–132). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978. Berlinghoff, W., & Gouvea, F. (2004). Linear Thinking Solving First Degree Equations. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 121–126). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978. Berlinghoff, W., & Gouvea, F. (2004). Something Less Than Nothing?NegativeNumbers In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 93–100). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978. Berlinghoff, W., & Gouvea, F. (2004). The cossic Art Writing Algebra with Sybols. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 113–120). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978. Boyer, C. B. (1993). Tópicos de História da Matemática para uso em sala de aula. Cálculo (H. H. Domingues, Trans. Vol. 6). Sao Paulo: Atual Editora Ltda. Bradley, R. E. (2011). Cusps: Horns and Beaks. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 89–99). Washington DC: The Mathematical Association of America. Bruckheimer, M., &Arcavi, A. (2000). Mathematics and Its History: Educational Partnership. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 135–140). Washington DC: The Mathematical Association of America. Calinger, R. (Ed.). (1996). Vita mathematica. Historical research and integration with teaching. [Washington, D.C.]: Mathematical Association of America. Cooke, R. (2011). Numerical solution of equations. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 17–21). Washington DC: The Mathematical Association of America. Cooke, R. (2011). The Sources of Algebra. In D. Jardine& A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 1–6). Washington DC: The Mathematical Association of America. Curtin, D. J. (2011). Complex Numbers, Cubic Equations, and Sixteenth-Century Italy. In D. & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 39–43). Washington DC: The Mathematical Association of America. Dorier, J. -L. (2000). Use of History in a Research Work on the Teaching of Linear Algebra. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 99–110). Washington DC: The Mathematical Association of America. Dorothy Wolfe. (1971). Discriminant. In Historical Topics for the Mathematics Classroom (pp. 323–324). Washington DC: National Council of Teachers of Mathematics. Ellis, W. (1971). The binomial Theorem. In Historical Topics for the Mathematics Classroom (pp. 264–266). Washington DC: National Council of Teachers of Mathematics. Eves, H. (1994). Tópicos de História da Matemática para uso em sala de aula. Geometría (H. H. Domingues, Trans. Vol. 3). Sao Paulo: Atual Editora Ltda. Fauvel, J., & Maanen, J. (1997). The Role of the History of Mathematics in the Teaching and Learning of Mathematics: Discussion Document for an ICMI Study (1997-2000). Mathematics in School, 26 (3), 10–11. Retrieved from http://www.jstor.org/stable/30215282. Fauvel, J., & van Maanen, J. (2000). History in Mathematics Education. The ICMI Study. Dordrecht/Boston/London: Kluwer Academic Publisher. Fauvel, J., Cousquer, É., Furinghetti, F., Heiede, T., Lit, C., Smid, H., Tzanakis, C. (2000). Bibliography for further work in the area In J. Fauvel & J. van Maanen (Eds.), History in mathematics education. The ICMI Study (pp. 371-418). Dordrecht: Kluwer Academic Publishers. Fletcher, S. (2002). An idea for teaching equations. Mathematics in School, 31(1), 28–29. François, K., & Van Bendegem, J. P. (Eds.). (2007). Philosophical Dimensions in Mathematics Education (Vol. 42): Springer. Führer, L. (1991). Historical Stories in the Mathematics Classroom. For the Learning of Mathematics,11(2), 24–31. Retrieved from http://www.jstor.org/stable/40248014. Fuller, L. (1971). Determinants and Matrices. In Historical Topics for the Mathematics Classroom (pp. 281–284). Washington DC: National Council of Teachers of Mathematics. Fundamental Theorem of Algebra. (1971). In Historical Topics for the Mathematics (pp. 316–318). Washington DC: National Council of Teachers of Mathematics. Furinghetti, F. (2007). Teacher education through the history of mathematics. EducationalStudies in Mathematics, 66, 131–146. doi:10.1007/s10649-006-9070-0. Guacaneme, E. A. (2008). Una aproximación a la relación Historia de las Matemáticas -Conocimiento del profesor de matemáticas. Paperpresented at the Tercer Encuentro de Programas de Formación Inicial de Profesores de Matemáticas. Guacaneme, E. A. (2011). La Historia de las Matemáticas en la educación de un profesor: razones e intenciones. Ponencia presentada en la Décimo tercera Conferencia Iberoamericana de Educación Matemática (XIII CIAEMIACME), Recife, Brasil. Gundlach, B. H. (1994). Tópicos de História da Matemática para uso em sala de aula. Números e numerais (H. H. Domingues, Trans. Vol. 1). Sao Paulo: Atual Editora Ltda. Heeffer, A. (2007). Learning Concepts through the History of Mathematics: The case of SimbolicAlgebra. In K. Francois & J. P. Van Bendegem (Eds.), Philosophical Dimensions in Mathematics Education (V 42York: Mathematics Education Library. Heiede, T. (2002). Denmark: A very short in-service course in the history of mathematics. In F. John & M. Jan Van (Eds.), History in Mathematics Education: The ICMI Study (6th ed., pp. 131–134). New York: Academic Publishers. Helfgott, M. (2004). Two examples from the natural sciences and their relationship to the history and pedagogy of mathematics. Mediterranean Journal for Research in Mathematic., 3(1-2), 147–166. Hitchcock, G. (1995). Dramatizing the Birth and Adventures of Mathematical Concepts: Two Dialogues. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 36–40). Washington DC: The Mathematical Association of America. Hitchcock, G. (1995). Dramatizing the Birth and Adventures of Mathematical Concepts: Two Dialogues. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 36–40).Washington DC: The Mathematical Association of America. Hood, R. (1971). Solution of Polynomial Equations of Third and Higher Degrees. In Historical Topics for the Mathematics Classroom (pp. 276–279). Washington DC: National Council of Teachers of Mathematics. Horiuchi, A. (2014). Higher Mathematics. In A. Karp & G. Schubling (Eds.), Handbook on the History of Mathematics Education (pp. 170–171). New York: Springer. Horiuchi, A. (2014). Notes for a History of the Teaching of Algebra. In A. Karp & G. Schubling (Eds.), Handbook on the History of Mathematics Education (pp. 459–472). New York: Springer. Hughes, B. (1995). The Earliest Correct Algebraic Solutions of Cubic Equations. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 107–112). Washington DC: The Mathematical Association of America. ICONTEC. 2008. Norma Técnica Colombiana NTC 1486. Documentación. Presentación de Tesis, Trabajos de grado y otros trabajos de investigación. Jardine, D., & Shell-Gellasch, A. (Eds.). (2011). Mathematical Time Capsules. Historical Modules for the Mathematics Classroom: The Mathematical Association of America. Jardine, D. (2011). Completing the Square trough the Milennia. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 23–28). Washington DC: The Mathematical Association of America. Joseph, G. G. (1997). What Is a Square Root? A Study of Geometrical Representation in Different Mathematical Traditions. Mathematics in School,26(3), 4–9. Retrieved from http://www.jstor.org/stable/30215281 Karp, A., & Schubring, G. (Eds.). (2014). Handbook on the History of Mathematics Education New York: Springer. Katz, V. (2007). Stages in the History of Algebra with Implications for Teaching. Educational Studies in Mathematics, 66, 185–201. doi:10.1007/s10649-006-9023-7. Katz, V. J. (Ed.). (2000b). Using History to Teach Mathematics: An International Perspective: The Mathematical Association of America. Katz, V., Dorier, J.-L., Bekken, O., & Sierpinska, A. (2002). The role of historical analysis in predicting and interpreting students’ difficulties in mathematics. In F. John & M. Jan Van (Eds.), History in Mathematics Education: The ICMI Study (6th ed., pp. 149–154). New York: Kluwer Academic Publishers. Katz, V., Dorier, J.-L., Bekken, O., & Sierpinska, A. (2002). The role of historical analysis in predicting and interpreting students’ difficulties in mathematics. In F. John & M. Jan Van (Eds.), History in Mathematics Education: The ICMI Study (6th ed., pp. 149–154). New York: Kluwer Academic Publishers. Lumpkin, B. (1995). From Egypt to BenjaminBanneker: African origins of false position solutions. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 279–288). Washington DC: The Mathematical Association of America. Man-Keung, S. (2000). An Excursion in Ancient Chinese Mathematics. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 159–166). Washington DC: The Mathematical Association of America. Montelle, C. (2011). Roots, Rocks, and Newton-Raphson Algorithms for approximating p2 3000 Years Apart. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 229–240). Washington DC: The Mathematical Association of America. Mosvold, R., Jakobsen, A., & Jankvist, U. T. (2014). How Mathematical Knowledge for Teaching May Profit from the Study of History of Mathematics. Science & Education, 23(1), 47–60. doi:10.1007/s11191-013-9612-7. NCTM. (1969). Historical Topics for the Mathematics Classroom. Thirty-first Yearbook. Washington, D.C.: National Council of Teacher of Mathematics. Ofir, R., &Arcavi, A. (1992). Word Problems and Equations: An Historical Activity for the Algebra Classroom. The Mathematical Gazette, 76(475), 69–84. Retrieved from http://links.jstor.org/sici?sici=0025-5572(199203)2:76:4752.0.CO;2-4. Panagiotou, E. N. (2014). A Voyage of Mathematical and Cultural Awareness for Students of Upper Secondary School. Scienc & Education, 23(1), 79–123. doi:10.1007/s11191-013-9653-y. Park, R. (1971). Horner’s Method. In Historical Topics for the Mathematics Classroom (pp. 274–275). Washington DC: National Council of Teachers of Mathematics. Perlis, S. (1971). Congruence (Mod m). In Historical Topics for the Mathematics Classroom (pp. 288–290). Washington DC: National Council of Teachers of Mathematics. Pratt, G. (1971). Early Greek Algebra. In Historical Topics for the Mathematics Classroom (pp. 291–301). Washington DC: National Council of Teachers of Mathematics. Radford, L. (1996). An Historical Incursion into the Hidden side of the Early Development of Equations. BSHM. Radford, L., & Georges Guérette. (2000). Second Degree Equations in the Classroom: A Babylonian Approach. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 69–75). Washington DC: The Mathematical Association of America. Radford, L., & Puig, L. (2007). Syntax and Meaning as Sensous, Visual, Historical forms of Algebraic Thinking. Educational Studies in Mathematics, 66(2), 145–164. doi:10.1007/s10649-006-9024-6. Read, C. (1971). Arabic Algebra, 820-1250. In Historical Topics for the Mathematics Classroom (pp. 305–309). Washington DC: National Council of Teachers of Mathematics. Schwartz, R. K. (2011). Adapting the Medieval “Rule of Double False Position” to the Modern Classroom. In D. Jardine& A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom(pp. 29–37). Washington DC: The Mathematical Association of America. Sena (s.f). ¿Qué tipos de lectura hay?. Recuperado de http://biblioteca.sena.edu.co/paginas/cap4e4.html. Sriraman, B. (Ed.). (2012). Crossroads in the History of Mathematics and Mathematics Education (Vol. Monograph 12): IAP/Information Age Pub. Sloyen, S. (1971). Algebra in Europa, 1200-1850. In Historical Topics for the Mathematics Classroom (pp. 309–311). Washington DC: National Council of Teachers of Mathematics. Swetz, F. (1995). Enigmas of Chinese Mathematics. In R. Calinger (Ed.), Vita Mathematica.Historical Research and integration with teaching(pp. 92–97).Washington DC: The Mathematical Association of America. Swetz, F. J., Fauvel, J., Bekken, O., Johansson, B., & Katz, V. J. (Eds.). (1995). Learn from the Masters! Washington, D.C.: The Mathematical Association of America. UPN, D. (2011). Criterios para la realización y evaluación de trabajo de grado. Bogotá. Waldeck, E., & Mainville, J. (1971). Rule of False Position. In Historical Topics for the Mathematics Classroom (p. 332). Washington DC: National Council of Teachers of Mathematics. Western, D. (1971). Descartes’s Rule of Signs. In Historical Topics for the Mathematics Classroom (pp. 318–320). Washington DC: National Council of Teachers of Mathematics. Winicki, G. (2000). The Analysis of Regula Falsi as an Instance for Professional Development of Elementary School Teachers. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp.129–133). Washington DC: The Mathematical Association of America. Wrestler, F. (1971).Hindu Algebra. In Historical Topics for the Mathematics Classroom(pp. 301–305). Washington DC: National Council of Teachers of Mathematics.