The role of conceptions in argumentation and proof
Tipo de documento
Autores
Lista de autores
Pedemonte, Bettina
Resumen
In this article an analysis concerning the role of students’ conceptions in solving a geometrical problem is presented. Even if conceptions do not usually appear in the final proof, they strongly affect the argumentation activity. The main aim of this paper is to show this influence. In particular, through the use of Toulmin’s model, we show how conceptions can affect the modal qualifier and the rebuttal of argumentation.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Gráfica | Otro (geometría) | Procesos de justificación | Simbólica
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Lista de editores (capitulo)
Perry, Patricia
Título del libro
Memorias 21° Encuentro de Geometria y sus Aplicaciones
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
37-48
ISBN (capítulo)
Referencias
Balacheff, N. (2000). A modelling challenge: Untangling learners’ knowing. In L’apprentissage, une approche transdisciplinaire (pp. 7-16). Orsay, France: Institut des Sciences Cognitives et de la Communication. Retrieved from http://telearn.archives-ouvertes.fr/docs/00/19/02/92/PD /Balacheff2000.pdf Balacheff, N. (2009). Bridging knowing and proving in mathematics: A didactical perspective. In G. Hanna, H.N. Jahnke and H. Pulte (Eds.), Explanation and proof in mathematics. Philosophical and educational perspectives(pp.115-135). New York, USA:Springer. Boero, P., Garuti, R. and Mariotti, M.A. (1996). Some dynamic mental processes underlying producing and proving conjectures. In L. Puig and Á. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (vol. II, pp. 121-128).Valencia, Spain: University of Valencia. Douady, R. (1985). The interplay between the different settings, tool-object dialectic in the extension of mathematical ability. In L. Streefland (Ed.), Proceedings of the 9th International Conference for the Psychology of Mathematics Education (vol. II, pp. 33-52). Utrecht, Germany: State University of Utrecht. Hollebrands, K., Conner, A. and Smith, R.C. (2010). The nature of arguments provided by college geometry students with access to technology while solving problems. Journal for Research in Mathematics Education, 41(4), 324-350. Inglis, M., Mejía-Ramos, J. P. and Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3-21. Knipping, C. (2008). A method for revealing structures of argumentation in classroom proving processes. ZDM, 40(3), 427-441. Lavy, I. (2006). A case study of different types of arguments emerging from explorations in an interactive computerized environment. Journal of Mathematical Behavior, 25(2), 153-169. Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration. Recherche en Didactique des Mathématiques, 25(3), 313- 348. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23-41. Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM, 40(3), 385-400. Stephan, M. and Rasmussen, C. (2002). Classroom mathematical practices in differential equations. Journal of Mathematical Behavior, 21(4), 459-490. Toulmin, S.E. (1993). The uses of arguments. Cambridge, UK: University Press (First published, 1958).
Proyectos
Cantidad de páginas
312