Una exploración de la incidencia de patrones corporales en la determinación de estados de aprendizaje matemático con el juego de la escalera
Tipo de documento
Autores
Lista de autores
Cárdenas, Claudia
Resumen
El presente trabajo hace parte de una investigación que intenta integrar nuevas posibilidades de instrumentación que ayude al profesor a reconocer los estados de aprendizaje de los estudiantes para fomentar ambientes de enseñanza/aprendizaje con todos y para todos. Para ello se integra la relación de expresiones corporales con estados de aprendizaje matemático tomando como base una práctica experimental con personas de diversas poblaciones al jugar con la escalera (Juego de potencial matemático), haciendo uso de un registro audiovisual y escrito que servirá como base para la elaboración de un prototipo robótico que logre asistir al profesor.
Fecha
2018
Tipo de fecha
Estado publicación
Términos clave
Diversidad sociocultural | Gestión de aula | Materiales manipulativos | Medios audiovisuales | Tipos de metodología
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Tipo de tesis
Institución (tesis)
Referencias
Bressan, A. (S.F). Principios de la educación matemáticas realista. Obtenido de https://lasmatesdeinma.files.wordpress.com/2011/11/principios-de-educacionmatematica-realista.pdf Caldeiro, G. P. (2005). Desarrollo y aprendizaje: Enfoques alternativos. Obtenido de Idoneos: https://educacion.idoneos.com/289908/#actividad-cognitiva-y-contexto-cultural Calderón, D. I., & León;Corredor, O. (2016). Elementos para una didáctica del lenguaje y las matemáticas en estudiantes sordos de niveles iniciales. Bogotá: Universidad Distrital Franciso José de Caldas. Obtenido de http://die.udistrital.edu.co/sites/default/files/doctorado_ud/publicaciones/elementos_p ara_una_didactica_del_lenguaje_y_las_matematicas_en_estudiantes_sordos_de_niveles _iniciales.pdf Castro, E., Cañadas, M. C., & Castro-Rodríguez , E. (2013). Pensamiento numérico en edades tempranas. Edma 0-6: Educación Matemática en la Infancia , 1-11. Castro, E., Rico , L., & Castro, E. (1995). Estructuras aritméticas elementales y su modelización. Bogotá: Grupo Editorial Iberoamérica S.A. Clements, D., & Sarama, J. (2009). Learning and teaching early math: the learnign trajectories approach. New York: Routledge. Freudenthal, H. (1999). Didactical Phenomenology of Mathematical Structures. London:: Kluwer Academic Publishers. Frontera Sancho, M. (2002). Errores cometidos en la solución de problemas aritméticos de enunciado verbal. Bogotá. García García, E. (2005). Educación, desarrollo y diversidad (Vol. 8 (1)). ISSN 1139-9899. Obtenido de http://eprints.ucm.es/5553/1/REVISTA_DEA%C3%91O.pdf García, E., & Carpintero, H. (2000). La modularidad de la mente: Aproximación multidisciplinar. Madrid: Universidad Complutense. Gómez, P., & Lupiáñez, J. L. (2007). Trayectorias hipotéticas de aprendizaje en la formación inicial de profesores de matemáticas de secundaria. Obtenido de http://www.pna.es/Numeros2/pdf/Gomez2007PNA1(2)Trayectorias.pdf Harvey, B., Klein, B., Petridou, N., & Dumoulin, S. (2006). Topographic Representation of Numerosity in the Human Parietal Cortex. Science, 341. Obtenido de http://science.sciencemag.org/content/341/6150/1123.full IESALC. (2008). Tendencias de la Educación Superior en América Latina y el Caribe. Caracas. Karmiloff, S. (1994). Más allá de la modularidad. Madrid: Alianza. Lakoff, G., & Nuñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic books. Laurillard, D. (2012). Teaching as a Design Science, Building Pedagogical Patterns for Learning and Technology. New York: Taylor & Francis. León Corredor, O. L. (2014). Referentes curriculares con incorporación de tecnologías para la formación del profesorado de matemáticas en y para la diversidad. Bogotá: Universidad Distrital Fransisco José de Caldas. Obtenido de http://209.177.156.169/libreria_cm/archivos/pdf_288.pdf León, O. L. (2014). INFORMACIÓN GENERAL DEL PROYECTO. Bogotá: Documento no publicado. León, O., Díaz Celis, F., & Guilombo, M. (junio-septiembre de 2014). Diseños didácticos y trayectorias de aprendizaje de la geometría de estudiantes sordos, en los primeros grados de escolaridad. Revista Latinoamericana de Etnomatemática, 7(2), 9-28. Llinares, S. (2014). Experimentos de enseñanza e investigación. Una dualidad en la práctica del formador de profesores de matemáticas. Educación matemática, 31-51. MEN. (1998). Lineamientos curriculares de matemáticas. Bogotá. MEN, Ministerio de Educación Nacional . (1994). Lineamientos curriculares de matemáticas. Bogotá. ONU. (2008). LA EDUCACIÓN INCLUSIVA: EL CAMINO HACIA EL FUTURO" PRESENTACIÓN GENERAL DE LA 48ª REUNIÓN DE LA CIE. Conferencia internacional de educación. Ginebra. Obtenido de http://www.ibe.unesco.org/fileadmin/user_upload/Policy_Dialogue/48th_ICE/General_Pr esentation-48CIE-4__Spanish_.pdf Opertti, R. (2009). De Salamanca a la CIE 2008: ventanas de oportunidades para la Educación Inclusiva. Conferencia Mundial sobre Educación Inclusiva. Salamanca: OIE-UNESCO. Obtenido de http://www.ibe.unesco.org/fileadmin/user_upload/COPs/News_documents/2009/0910S alamanca/Salamanca_PPT.pdf Parra, C. (2010). Educación inclusiva: Un modelo de educación para todos. ISEES(8), 73-84. Rodriguez Molina, L. F. (2016). TRAYECTORIA HIPOTÉTICA DE APRENDIZAJE: APRENDIZAJE DE LAS OPERACIONES SUMA Y RESTA EN AULAS INCLUSIVAS CON INCORPORACIÓN TECNOLÓGICA. Bogotá: Universidad Distrital Fransisco José de Caldas. Schwartz, J. (1988). Intensive Quantity and Referent Transforming Arithmetic Operations. In: Number Concepts and Operations in the Middle Grades (James Hiebert & Merylin Behr. Eds). National Council of Teachers of Mathematics, 41-52. UNESCO/OREALC. (2001). Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura. Obtenido de Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura: http://unesdoc.unesco.org/images/0013/001354/135468s.pdf
Proyectos
Cantidad de páginas
58